OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 10 — Oct. 1, 2001
  • pp: 1410–1415

Fluctuations in ball- and ring-shaped magneto-optical traps at low densities

D. Felinto, H. Regehr, J. W. R. Tabosa, and S. S. Vianna  »View Author Affiliations


JOSA B, Vol. 18, Issue 10, pp. 1410-1415 (2001)
http://dx.doi.org/10.1364/JOSAB.18.001410


View Full Text Article

Enhanced HTML    Acrobat PDF (148 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We apply a three-dimensional Doppler Monte Carlo simulation to study fluctuation in magneto-optical traps with various laser beam configurations. First, the temperature and the radius of a lithium trap are calculated with the assumption of exactly counterpropagating beams. The results are compared with previously reported experimental data [Opt. Commun. 158, 263 (1998)]. Subsequently, the role of fluctuation in the transition from a ball- to a ring-shaped spatial distribution of atoms is investigated. This transition occurs when the laser beams in the xy plane are progressively misaligned. Finally, the temperature of the atoms in a ring-shaped distribution is determined, and its dependence with the misalignment of the beams is analyzed.

© 2001 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.7010) Atomic and molecular physics : Laser trapping
(140.3320) Lasers and laser optics : Laser cooling
(140.7010) Lasers and laser optics : Laser trapping

Citation
D. Felinto, H. Regehr, J. W. R. Tabosa, and S. S. Vianna, "Fluctuations in ball- and ring-shaped magneto-optical traps at low densities," J. Opt. Soc. Am. B 18, 1410-1415 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-10-1410


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, “Optical molasses,” J. Opt. Soc. Am. B 6, 2084–2107 (1989). [CrossRef]
  2. J. Dalibard, Y. Castin, and K. Mølmer, “Wave-function approach to dissipative processes in quantum optics,” Phys. Rev. Lett. 68, 580–583 (1992). [CrossRef] [PubMed]
  3. Y. Castin and K. Mølmer, “Monte Carlo wave-function analysis of 3D optical molasses,” Phys. Rev. Lett. 74, 3772–3775 (1995). [CrossRef] [PubMed]
  4. Z. Lin, K. Shimizu, M. Zhan, F. Shimizu, and H. Takuma, “Laser cooling and trapping of Li,” Jpn. J. Appl. Phys. 30, L1324–L1326 (1991). [CrossRef]
  5. U. Schünemann, H. Engler, M. Zielonkowski, M. Weidemüller, and R. Grimm, “Magneto-optic trapping of lithium using semiconductor lasers,” Opt. Commun. 158, 263–272 (1998). [CrossRef]
  6. D. Sesko, T. Walker, and C. Wieman, “Behavior of neutral atoms in a spontaneous force trap,” J. Opt. Soc. Am. B 8, 946–958 (1991). [CrossRef]
  7. L. G. Marcassa, D. Milori, M. Oriá, G. I. Surdutovich, S. C. Zilio, and V. S. Bagnato, “Magneto-optical trap of sodium atoms from a vapor cell and observation of spatial modes,” Braz. J. Phys. 22, 3–6 (1992).
  8. V. S. Bagnato, L. G. Marcassa, M. Oriá, G. I. Surdutovich, and S. C. Zilio, “Spatial distributions of optically trapped cooled neutral atoms,” Laser Phys. 2, 172–177 (1992).
  9. T. Walker, D. Sesko, and C. Wieman, “Collective behavior of optically trapped neutral atoms,” Phys. Rev. Lett. 64, 408–411 (1990). [CrossRef] [PubMed]
  10. M. T. de Araujo, L. G. Marcassa, S. C. Zilio, and V. S. Bagnato, “Double-ring structure: another variant in the spatial distribution of cold sodium atoms,” Phys. Rev. A 51, 4286–4288 (1995). [CrossRef] [PubMed]
  11. D. Felinto and S. S. Vianna, “Orbital modes in low-density magneto-optical traps,” J. Opt. Soc. Am. B 17, 681–689 (2000). [CrossRef]
  12. F. Dias Nunes, J. F. Silva, S. C. Zilio, and V. S. Bagnato, “Influence of laser fluctuations and spontaneous emission on the ring-shaped atomic distribution in a magneto-optical trap,” Phys. Rev. A 54, 2271–2274 (1996). [CrossRef]
  13. A. S. Arnold and P. J. Manson, “Atomic density and temperature distributions in magneto-optical traps,” J. Opt. Soc. Am. B 17, 497–506 (2000). [CrossRef]
  14. V. S. Bagnato, L. G. Marcassa, D. Milori, M. Oriá, G. I. Surdutovich, R. Vitlina, and S. C. Zilio, “Spatial distribution of atoms in a magneto-optical trap,” Phys. Rev. A 48, 3771–3775 (1993). [CrossRef] [PubMed]
  15. D. M. B. P. Milori, A. M. Tuboy, L. G. Marcassa, R. Habesch, S. C. Zilio, and V. S. Bagnato, “Transitions between stable spatial distributions of atoms in a magneto-optical trap,” Laser Phys. 8, 1163–1166 (1998).
  16. M. T. de Araujo, R. J. Horowicz, D. Milori, A. Tuboy, R. Kaiser, S. C. Zilio, and V. S. Bagnato, “Time of flight technique to determine temperature of atoms in a ring-shaped trap,” Opt. Commun. 119, 85–89 (1995). [CrossRef]
  17. P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169–172 (1988). [CrossRef] [PubMed]
  18. A. M. Steane and C. J. Foot, “Laser cooling below the Doppler limit in a magneto-optical trap,” Europhys. Lett. 14, 231–236 (1991). [CrossRef]
  19. S. Chu and C. Wieman, eds., Feature on laser cooling and trapping of atoms, J. Opt. Soc. Am. B 6, 2020–2278 (1989).
  20. M. Drewsen, Ph. Laurent, A. Nadir, G. Santarelli, A. Clairon, Y. Castin, D. Grison, and C. Salomon, “Investigation of sub-Doppler cooling effects in a cesium magneto-optical trap,” Appl. Phys. B 59, 283–298 (1994). [CrossRef]
  21. C. D. Wallace, T. P. Dinneen, K. Y. N. Tan, A. Kumarakrishnan, P. L. Gould, and J. Javanainen, “Measurements of temperature and spring constant in a magneto-optical trap,” J. Opt. Soc. Am. B 11, 703–711 (1994). [CrossRef]
  22. C. G. Townsend, N. H. Edwards, C. J. Cooper, K. P. Zetie, C. J. Foot, A. M. Steane, P. Szriftgiser, H. Perrin, and J. Dalibard, “Phase-space density in the magneto-optical trap,” Phys. Rev. A 52, 1423–1440 (1995). [CrossRef] [PubMed]
  23. J. W. R. Tabosa, A. Lezama, and G. C. Cardoso, “Transient Bragg diffraction by a transferred population grating: application for cold atoms velocimetry,” Opt. Commun. 165, 59–64 (1999). [CrossRef]
  24. S. Grego, M. Colla, A. Fioretti, J. H. Muller, P. Verkerk, and E. Arimondo, “A cesium magneto-optical trap for cold collisions studies,” Opt. Commun. 132, 519–526 (1996). [CrossRef]
  25. I. Guedes, M. T. Araujo, D. M. B. P. Milori, G. I. Surdutovich, V. S. Bagnato, and S. C. Zilio, “Forces acting on magneto-optically trapped atoms,” J. Opt. Soc. Am. B 11, 1935–1940 (1994). [CrossRef]
  26. D. Felinto, L. G. Marcassa, V. S. Bagnato, and S. S. Vianna, “Influence of the number of atoms in a ring-shaped magneto-optical trap: observation of bifurcation,” Phys. Rev. A 60, 2591–2594 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited