OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 10 — Oct. 1, 2001
  • pp: 1474–1482

Bacteriorhodopsin: a natural, efficient (nonlinear) photonic crystal

Koen Clays, Sven Van Elshocht, Mingjun Chi, Erwin Lepoudre, and André Persoons  »View Author Affiliations

JOSA B, Vol. 18, Issue 10, pp. 1474-1482 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (303 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



From the angular dependence of the second-order nonlinear light scattering (hyper-Rayleigh scattering) from a suspension of purple membrane, bacteriorhodopsin was recently shown to exhibit (nonlinear) photonic crystal properties [Opt. Lett. 25, 1391 (2000)]. The optical nonlinearity, i.e., the first hyperpolarizability β, is localized in the small retinal moiety, whereas the optically linear refractive index n is relevant to the large membrane protein. The combination of the nonlinear hyperpolarizability of the retinal decoupled from the linear refractive index of the protein explains the observed angular dependence. The temporal evolution of this angular dependence has now been analyzed. The disappearance of the angular dependence of the nonlinear scattering is shown to be a consequence of the solubilization of the large purple membrane patches into individual protein monomers. This result strongly suggests that decoupling of the optical nonlinearity from the phase-matching condition for coherent second-harmonic generation will result in highly efficient coherent second-harmonic generation in bacteriorhodopsin crystals. In addition, a simulation of the bandgap properties was made for an abstracted structure with a large refractive index for the retinal and with a small refractive index for the protein matrix.

© 2001 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(190.4180) Nonlinear optics : Multiphoton processes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

Koen Clays, Sven Van Elshocht, Mingjun Chi, Erwin Lepoudre, and André Persoons, "Bacteriorhodopsin: a natural, efficient (nonlinear) photonic crystal," J. Opt. Soc. Am. B 18, 1474-1482 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
  2. T. H. Dai, K. D. Singer, R. J. Twieg, and T. C. Kowalczyk, “Anomalous-dispersion phase-matched second-harmonic generation in polymer waveguides: chromophores for increased efficiency and ultraviolet stability,” J. Opt. Soc. Am. B 17, 412–421 (2000). [CrossRef]
  3. K. Clays, J. S. Schildkraut, and D. J. Williams, “Phase-matched second-harmonic generation in a four-layered polymeric waveguide,” J. Opt. Soc. Am. B 11, 655–664 (1994). [CrossRef]
  4. B. Busson, M. Kauranen, C. Nuckolls, T. J. Katz, and A. Persoons, “Quasi-phase-matching in chiral materials,” Phys. Rev. Lett. 84, 79–82 (2000). [CrossRef] [PubMed]
  5. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997). [CrossRef]
  6. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. I. Ippen, “Photonic-bandgap microcavities is optical waveguides,” Nature 390, 143–145 (1997). [CrossRef]
  7. S. E. Barkou, J. Broeng, and A. Bjarklev, “Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect,” Opt. Lett. 24, 46–48 (1999). [CrossRef]
  8. J. G. Fleming and S.-Y. Lin, “Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 μm,” Opt. Lett. 24, 49–51 (1999). [CrossRef]
  9. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999). [CrossRef] [PubMed]
  10. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998). [CrossRef] [PubMed]
  11. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999). [CrossRef] [PubMed]
  12. J. Martorell, R. Vilaseca, and R. Corbalan, “Scattering of second-harmonic from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A 55, 4520–4525 (1997). [CrossRef]
  13. J. Martorell, R. Vilaseca, and R. Corbalán, “Second harmonic generation in a photonic crystal,” Appl. Phys. Lett. 70, 702–704 (1997). [CrossRef]
  14. Z. Chen, D. Govender, R. Gross, and R. Birge, “Advances in protein-based 3-dimensional optical memories,” BioSystems 35, 145–151 (1995). [CrossRef]
  15. Q. W. Song, C. Zhang, R. Gross, and R. Birge, “Optical limiting by chemically enhanced bacteriorhodopsin films,” Opt. Lett. 18, 775–777 (1993). [CrossRef] [PubMed]
  16. Q. W. Song, C. Zhang, R. Blumer, R. B. Gross, Z. Chen, and R. R. Birge, “Chemically enhanced bacteriorhodopsin thin-film spatial light modulator,” Opt. Lett. 18, 1373–1375 (1993). [CrossRef] [PubMed]
  17. T. Miyasaka, K. Koyama, and I. Itoh, “Quantum conversion and image detection by a bacteriorhodopsin-based artificial photoreceptor,” Science 255, 342–344 (1992). [CrossRef] [PubMed]
  18. R. R. Birge, “Protein-based optical computing and memories,” Computer (November 1992), pp. 56–67.
  19. R. R. Birge, P. A. Fleitz, A. F. Lawrence, M. A. Masthay, and C. F. Zhang, “Nonlinear optical properties of bacteriorhodopsin: assignment of second order hyperpolarizabilities of randomly oriented systems using two-photon spectroscopy,” Molecular Cryst. Liq. Cryst. 189, 107–122 (1990).
  20. R. R. Birge and C.-F. Zhang, “Two-photon double resonance spectroscopy of bacteriorhodopsin. Assignment of the electronic and dipolar properties of the low-lying 1Ag*-like and 1Bu*+-like π, π* states,” J. Chem. Phys. 92, 7178–7195 (1990). [CrossRef]
  21. J. Y. Huang, Z. Chen, and A. Lewis, “Second-harmonic generation in purple membrane-poly(vinylalcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in bR570 and M412,” J. Phys. Chem. 93, 3314–3320 (1989). [CrossRef]
  22. K. C. Hsu and G. W. Rayfield, “Hyperpolarizability of genetically engineered bacteriorhodopsin,” presented at the Topical Meeting on Nonlinear Optics, Kauai, Hawaii, August 10–14, 1998.
  23. W. Marwan, P. Hegemann, and D. Oesterhelt, “Single photon detection by an archaebacterium,” J. Mol. Biol. 199, 663–664 (1988). [CrossRef] [PubMed]
  24. N. Hampp, A. Popp, C. Braüchle, and D. Oesterhelt, “Diffraction efficiency of bacteriorhodopsin films for holography containing bacteriorhodopsin wild type bR(WT) and its variants bR(D85E) and bR(D96N),” J. Phys. Chem. 96, 4679–4685 (1992). [CrossRef]
  25. T. Renner, F. W. Deeg, and C. Braüchle, “Transient phase grating spectroscopy of nanosecond relaxation dynamics in bacteriorhodopsin,” J. Phys. Chem. 99, 7267–7271 (1995). [CrossRef]
  26. E. Hendrickx, K. Clays, A. Persoons, C. Dehu, and J.-L. Brédas, “The bacteriorhodopsin chromophore retinal and derivatives: an experimental and theoretical investigation of the second-order optical properties,” J. Am. Chem. Soc. 117, 3547–3555 (1995). [CrossRef]
  27. J. Huang, A. Lewis, and Th. Rasing, “Second harmonic generation from Langmuir–Blodgett films of retinal and retinal Schiff bases,” J. Phys. Chem. 92, 1756–1759 (1988). [CrossRef]
  28. E. Schmälzlin, K. Meerholz, S. Stadler, C. Bräuchle, H. Patzelt, and D. Oesterhelt, “Molecular first hyperpolarizabilities of retinal and its derivatives,” Chem. Phys. Lett. 280, 551–555 (1997). [CrossRef]
  29. K. Clays, E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, and J.-L. Brédas, “Nonlinear optical properties of proteins measured by hyper-Rayleigh scattering in solution,” Science 262, 1419–1422 (1993). [CrossRef] [PubMed]
  30. E. Hendrickx, A. Vinckier, K. Clays, and A. Persoons, “Evidence of octopolar symmetry in bacteriorhodopsin trimers by hyper-Rayleigh scattering from purple membrane suspensions,” J. Phys. Chem. 100, 19, 672–19, 680 (1996). [CrossRef]
  31. K. Clays, E. Hendrickx, M. Triest, and A. Persoons, “Second-order nonlinear optics in isotropic liquids: hyper-Rayleigh scattering in solution,” J. Mol. Liq. 67, 133–155 (1995). [CrossRef]
  32. P. Allcock, D. L. Andrews, S. R. Meech, and A. J. Wigman, “Doubly forbidden second-harmonic generation from isotropic suspensions: studies on the purple membrane of Halobacterium halobium,” Phys. Rev. A 53, 2788–2791 (1996). [CrossRef] [PubMed]
  33. P. K. Schmidt and G. W. Rayfield, “Hyper-Rayleigh light scattering from an aqueous suspension of purple membrane,” Appl. Opt. 33, 4286–4292 (1994). [CrossRef] [PubMed]
  34. K. Clays, S. Van Elshocht, and A. Persoons, “Bacteriorhodopsin: a natural (nonlinear) photonic bandgap material,” Opt. Lett. 25, 1391–1393 (2000). [CrossRef]
  35. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980–2983 (1991). [CrossRef] [PubMed]
  36. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Rev. Sci. Instrum. 63, 3285–3289 (1992). [CrossRef]
  37. K. Clays, A. Persoons, and L. De Maeyer, “Hyper-Rayleigh scattering in solution,” in Modern Nonlinear Optics, M. Evans and S. Kielich, eds. (Wiley, New York, 1994), Part 3, Vol. 85, pp. 455–498.
  38. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), pp. 97–98.
  39. A. B. Myers and R. B. Birge, “The ground-state dipole moments of all-trans and 9-cis retinal,” J. Am. Chem. Soc. 103, 1881–1885 (1981). [CrossRef]
  40. Q. W. Song, C. Y. Ku, C. P. Zhang, R. B. Gross, R. B. Birge, and R. Michalak, “Modified critical angle method for measuring the refractive index of bio-optical materials and its application to bacteriorhodopsin,” J. Opt. Soc. Am. B 12, 797–803 (1995). [CrossRef]
  41. Integrated & Fiber Optical Gratings Design Software, version 3.0 (Optiwave Corporation, Nepean, Ontario, Canada). This software is based on coupled-mode theory.
  42. T. Hamanaka, T. Mitsui, T. Ashida, and M. Kakudo, “The crystal structure of all-trans retinal,” Acta Crystallogr., Sect. B 28, 214–222 (1972). [CrossRef]
  43. R. D. Gilardi and I. L. Karle, “The crystal and molecular structure of 11-cis-retinal,” Acta Crystallogr., Sect. B 28, 2605–2612 (1972). [CrossRef]
  44. C. J. Simmons, R. S. H. Liu, M. Denny, and K. Seff, “The crystal structure of 13-cis-retinal. The molecular structures of its 6-s-cis and 6-s-trans conformers,” Acta Crystallogr., Sect. B 37, 2197–2205 (1981). [CrossRef]
  45. E. M. Landau and J. P. Rosenbusch, “Lipidic cubic phases: a novel concept for the crystallization of membrane proteins,” Proc. Nat. Acad. Sci. USA 93, 14, 532–14, 535 (1996). [CrossRef]
  46. H. Luecke, H.-T. Richter, and J. K. Lanyi, “Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution,” Science 280, 1934–1937 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited