OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 10 — Oct. 1, 2001
  • pp: 1497–1511

Radiation scattering by apertures in vertical-cavity surface-emitting laser cavities and its effects on mode structure

S. Riyopoulos and D. Dialetis  »View Author Affiliations

JOSA B, Vol. 18, Issue 10, pp. 1497-1511 (2001)

View Full Text Article

Acrobat PDF (634 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Microcavities with subwavelength features, such as oxide apertures and etched-mesa edges, suffer wide-angle scattering that cannot be captured by the paraxial propagation limit; hence the scattering cannot be fully accounted for by index guiding or by lenslike phase shifts. We present a systematic treatment by using the Born approximation in the vector Maxwell equations. We then introduce the scattering losses in the cavity round-trip matrix, by using a Gauss–Laguerre representation of the cavity modes. Optimization of the round-trip coefficient including confinement, diffraction, and scattering losses yields the mode waist in laterally open vertical cavity surface emitting laser (VCSEL) cavities. A simple equation relating the current aperture to mode spot size is obtained. The analytic results are applied to etched-mesa and oxide-confined VCSEL designs. Predictions for the mode waist and threshold current are comparable with experimental results in oxide-confined VCSELs.

© 2001 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(290.0290) Scattering : Scattering

S. Riyopoulos and D. Dialetis, "Radiation scattering by apertures in vertical-cavity surface-emitting laser cavities and its effects on mode structure," J. Opt. Soc. Am. B 18, 1497-1511 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold VCSELs,” Appl. Phys. Lett. 65, 97–99 (1994).
  2. K. D. Choquette, R. P. Schneider, K. L. Lear, and K. M. Geib, “Low threshold VCSELs fabricated by selective oxidization,” Electron. Lett. 30, 2043–2044 (1994).
  3. Y. Hayashi, T. Mukaihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, and K. Iga, “Record low threshold index-guided InGaAs/GaAlAs VCSELs with native oxide confinement structure,” Electron. Lett. 31, 560–561 (1995).
  4. G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “Ultralow threshold current VCSELs obtained with selective oxidization,” Electron. Lett. 31, 886–887 (1995).
  5. B. J. Thibeault, K. Bertilsson, E. R. Hegblom, E. Strzelecka, P. D. Floyd, R. Naone, and L. A. Coldren, “High-speed characteristics of low optical loss oxide-apertured VCSELs,” IEEE Photon. Technol. Lett. 9, 11–13 (1997).
  6. H. J. Unold, S. W. Mahmoud, F. Eberhard, R. Jaeger, M. Kicherer, F. Mederer, M. C. Riedl, and K. J. Ebeling, “Large-area, single-mode selectively oxidized VCSELs: approaches and experimental,” in Vertical-Cavity Surface Emitting Lasers IV, K. D. Choquette and C. Lei, eds. Proc. SPIE 3946, 207–217 (2000).
  7. G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S. Corzine, “Comprehensive numerical modeling of VCSELs,” IEEE J. Quantum Electron. 32, 607–616 (1996).
  8. E. R. Hegblom, D. I. Babic, B. J. Thibeault, and L. A. Coldren, “Scattering losses from dielectric apertures in VCSELs,” IEEE J. Sel. Top. Quantum Electron 3, 379–389 (1997).
  9. D. Burak and R. Binder, “Cold-cavity vectorial eigenmodes of VCSEL’s,” IEEE J. Quantum Electron. 33, 1205–1215 (1997).
  10. K. D. Choquette, W. W. Chow, G. R. Hadley, H. Q. Chow, and K. M. Gab, “Scalability of small-aperture selectively oxidized VCSELs,” Appl. Phys. Lett. 70, 823–825 (1997).
  11. G. Liu, J.-F. Seurin, S. L. Chuang, D. I. Babic, S. W. Corzine, M. Tan, D. C. Barnes, and T. N. Tiouririne, “Mode-selectivity study of VCSELs,” Appl. Phys. Lett. 73, 726–729 (1998).
  12. A. E. Bond, P. D. Dapkus, and J. D. O’Brien, “Design of low-loss single-mode VCSELs,” IEEE J. Sel. Top. in Quantum Electron. 5, 574–581 (1999).
  13. B. Demeulenaere, P. Bienstman, B. Dhoedt, and R. G. Baets, “Detailed study of AlAs-oxidized apertures in VCSEL cavities for optimized modal performance,” IEEE J. Quantum Electron. 35, 358–367 (1999).
  14. P. Bienstman, R. G. Baets, J. Vukusic, A. Larsson, M. Noble, M. Brunner, K. Gulden, P. Debernardi, H. Wenzel, and B. Klein, “Comparison of optical VCSEL models of the simulation of position dependent effects of thin oxide apertures,” Rep. COST268 (1999).
  15. S. Riyopoulos, D. Dialetis, J-M. Inman, and A. Phillips, “Active-cavity vertical-cavity surface-emiting laser eigenmodes with simple analytic representation,” J. Opt. Soc. Am. B 18, 1268–1284 (2001).
  16. D. I. Babic and S. W. Corzine, “Analytic expressions for reflection delay, penetration depth and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28, 514–524 (1992).
  17. J. D. Jackson Classical Electrodynamics 2nd. ed. (Wiley, New York, 1975), pp. 391–397.
  18. S. Riyopoulos, D. Dialetis, J. Liu, and B. Riely, “Generic representation of active cavity VCSEL eigenmodes by optimized waist gain guided Gauss–Laguerre modes,” IEEE J. Sel. Top. Quantum Electron. (to be published).
  19. D. I. Babic, “Double-fused long wavelength VCSELs,” Ph.D. dissertation (University of California, Santa Barbara, Calif. 1995), pp. 67–212.
  20. See, for example, C. C. Davis, Lasers and Electro-optics (Cambridge, U. Press, Cambridge, UK, 1996), pp. 416–423.
  21. S. P. Hegarty, G. Huyet, P. Porta, J. G. McInerney, K. D. Choquette, K. M. Geib, and H. Q. Hou, “Transverse mode structure and pattern formation in oxide-confined VCSELs,” J. Opt. Soc. Am. B 16, 2060–2071 (2000).
  22. J. D. Lambkin, T. Calvert, B. Corbett, J. Woodhead, S. M. Pinches, A. Onischenko, T. E. Sale, J. Hosea, P. Van Daele, K. Van de Putte, A. Van Hove, A. Valster, J. G. McInerney, and P. Porta, “Development of a red VCSEL-to-plastic fiber module for use in parallel optical links,” (in Vertical-Cavity Surface-Emitting Lasers IV, K. D. Choquette and C. Lei eds.) Proc. SPIE 3946, 95–105 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited