OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 11 — Nov. 1, 2001
  • pp: 1545–1553

Characterization of coherent population-trapping resonances as atomic frequency references

Svenja Knappe, Robert Wynands, John Kitching, Hugh G. Robinson, and Leo Hollberg  »View Author Affiliations

JOSA B, Vol. 18, Issue 11, pp. 1545-1553 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (238 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A low-cost, potentially compact and robust microwave frequency reference can be constructed by use of vertical-cavity surface-emitting lasers and coherent population-trapping resonances in Cs vapor cells. Fractional frequency instabilities of 2×10-11/τ/s have been achieved with a minimum of 7×10-13 at τ=1000 s. The performance of this device as a function of external parameters such as light intensity, optical detuning, and cell temperature is discussed. The dependence of the dark-line resonance signal on these parameters can be understood largely by means of a simple, three-level model. The short-term stability depends critically on the optical detuning, whereas the long-term stability is limited currently by line shifts due to drifts in cell temperature.

© 2001 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(020.3690) Atomic and molecular physics : Line shapes and shifts
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(270.1670) Quantum optics : Coherent optical effects
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6420) Spectroscopy : Spectroscopy, nonlinear

Svenja Knappe, Robert Wynands, John Kitching, Hugh G. Robinson, and Leo Hollberg, "Characterization of coherent population-trapping resonances as atomic frequency references," J. Opt. Soc. Am. B 18, 1545-1553 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (Hilger, London, 1989).
  2. J. R. Zacharias, unpublished (1953), described in N. F. Ramsey, “Nobel lecture: experiments with separated oscillatory fields and hydrogen masers,” Rev. Mod. Phys. 62, 541 (1990). [CrossRef]
  3. M. Kasevich, E. Riis, S. Chu, and R. De Voe, “Rf spectroscopy in an atomic fountain,” Phys. Rev. Lett. 63, 612–615 (1989). [CrossRef] [PubMed]
  4. A. Clairon, P. Laurent, G. Santarelli, S. Ghezali, S. Lea, and M. Bahoura, “A cesium fountain frequency standard: preliminary results,” IEEE Trans. Instrum. Meas. 44, 128–131 (1995). [CrossRef]
  5. D. Meekhof, S. R. Jefferts, M. Stepanovic, and T. Parker, “Accuracy evaluation of a cesium fountain primary frequency standard at NIST,” IEEE Trans. Instrum. Meas. 50, 507–509 (2001). [CrossRef]
  6. M. Poelker, P. Kumar, and S.-T. Hoe, “Laser frequency translation: a new method,” Opt. Lett. 16, 1853–1855 (1991). [CrossRef] [PubMed]
  7. P. Kumar and J. H. Shapiro, “Observation of Raman-shifted oscillation near the sodium D lines,” Opt. Lett. 10, 226–228 (1985). [CrossRef] [PubMed]
  8. C. Rahman and H. G. Robison, “Rb 0–0 hyperfine transition in evacuated wall-coated cell at melting temperature,” IEEE J. Quantum Electron. QE-23, 452–454 (1987). [CrossRef]
  9. N. Vukičević, A. S. Zibrov, L. Hollberg, F. L. Walls, J. Kitching, and H. G. Robinson, “Compact diode-laser based rubidium frequency reference,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1122–1126 (2000). [CrossRef]
  10. P. R. Hemmer, M. S. Shahriar, H. Lamela-Rivera, S. P. Smith, B. E. Bernacki, and S. Ezekiel, “Semiconductor laser excitation of Ramsey fringes by using a Raman transition in a cesium beam,” J. Opt. Soc. Am. B 10, 1326–1329 (1993). [CrossRef]
  11. N. Cry, M. Te⁁tu, and M. Breton, “All-optical microwave frequency standard: a proposal,” IEEE Trans. Instrum. Meas. 42, 640–649 (1993). [CrossRef]
  12. J. Vanier, A. Godone, and F. Levi, “Coherent microwave emission in cesium under coherent population trapping,” Phys. Rev. A 59, R12–R15 (1999). [CrossRef]
  13. F. Levi, A. Godone, and J. Vanier, “The light shift effect in the coherent population trapping cesium maser,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 609–615 (1999). [CrossRef]
  14. A. Godone, F. Levi, and J. Vanier, “Coherent microwave emission without population inversion: a new atomic frequency standard,” IEEE Trans. Instrum. Meas. 48, 504–507 (1999). [CrossRef]
  15. J. Kitching, S. Knappe, N. Vukičević, L. Hollberg, R. Wynands, and W. Weidemann, “A microwave frequency reference based on VCSEL-driven dark line resonances in Cs vapor,” IEEE Trans. Instrum. Meas. 49, 1313–1317 (2000). [CrossRef]
  16. J. A. Kusters and C. A. Adams, “Performance requirements of communication base station time standards,” RF Design (May 1999), pp. 28–38.
  17. J. E. Thomas, S. Ezekiel, C. C. Leiby, Jr., R. N. Picard, and C. R. Willis, “Ultrahigh-resolution spectroscopy and frequency standards in the microwave and far-infrared regions using optical lasers,” Opt. Lett. 6, 298–300 (1981). [CrossRef] [PubMed]
  18. J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, Jr., R. N. Picard, and C. R. Willis, “Observation of Ramsey fringes using a stimulated, resonance Raman transition in a sodium atomic beam,” Phys. Rev. Lett. 48, 867–870 (1982). [CrossRef]
  19. P. R. Hemmer, S. Ezekiel, and C. C. Leiby, Jr., “Stabilizationof a microwave oscillator using a resonance Raman transition in a sodium beam,” Opt. Lett. 8, 440–442 (1983). [CrossRef] [PubMed]
  20. S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas induced linewidth reduction of coherent dark resonances to below 50 Hz,” Phys. Rev. A 56, R1063–R1066 (1997). [CrossRef]
  21. J. Barnes, A. Chi, L. Cutler, D. Healey, D. Leeson, T. McGunigal, J. Mullen, W. Smith, R. Sydnor, R. Vessot, and G. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105–120 (1971). [CrossRef]
  22. E. Arimondo, “Relaxation processes in coherent population trapping,” Phys. Rev. A 54, 2216–2223 (1996). [CrossRef] [PubMed]
  23. J. Vanier, A. Godone, and F. Levi, “Coherent population trapping in cesium: dark lines and coherent microwave emission,” Phys. Rev. A 58, 2345–2358 (1998). [CrossRef]
  24. A. Nagel, C. Affolderbach, S. Knappe, and R. Wynands, “Influence of excited state hyperfine structure on ground state coherence,” Phys. Rev. A 61, 012504 (2000). [CrossRef]
  25. N. Allard and J. Kielkopf, “The effect of neutral nonresonant collisions on atomic spectral lines,” Rev. Mod. Phys. 54, 1103–1182 (1982). [CrossRef]
  26. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983). [CrossRef]
  27. W. Happer, “Optical pumping,” Rev. Mod. Phys. 44, 169–243 (1972). [CrossRef]
  28. A. Nagel, S. Brandt, D. Meschede, and R. Wynands, “Light shift of coherent population trapping resonances,” Europhys. Lett. 48, 385–389 (1999). [CrossRef]
  29. J. Kitching, L. Hollberg, S. Knappe, and R. Wynands, “Frequency-dependent optical pumping in atomic Λ systems,” Opt. Lett. (to be published).
  30. S. Knappe, Institute für Angeuwandte Physik, Universität Bonn, Weglestrasse 8, D-53115 Bonn, Germany; J. Kitching and L. Hollberg, Time and Frequency Division, Mail Stop 847.10, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80303 (personal communication, 2000).
  31. N. Beverini, F. Strumia, and G. Rovera, “Buffer gas pressure shifts in the mF=0↔mF=0 ground state hyperfine line in Cs,” Opt. Commun. 37, 394–396 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited