OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 11 — Nov. 1, 2001
  • pp: 1570–1577

Thermal fixing of holograms and their electrically assisted development in barium calcium titanate crystals

N. Korneev, H. Veenhuis, K. Buse, and E. Krätzig  »View Author Affiliations

JOSA B, Vol. 18, Issue 11, pp. 1570-1577 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (159 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photorefractive space-charge gratings in barium calcium titanate crystals are studied with non-steady-state photoelectromotive force and holographic techniques in the temperature range from 20 to 160 °C. Although the crystals undergo a ferroelectric–paraelectric phase transition at 100 °C, no sharp discontinuity of the space–charge field is observed. However, a slowly compensating grating is found, and thermal fixing is demonstrated. The behavior of the fixed grating is well described by a theory that was developed for lithium niobate. The lifetime of the fixed grating depends strongly on fringe spacing and temperature, and the diffraction efficiency of the fixed grating can be drastically enhanced by application of an external electric field.

© 2001 Optical Society of America

OCIS Codes
(090.2900) Holography : Optical storage materials
(160.5320) Materials : Photorefractive materials
(210.2860) Optical data storage : Holographic and volume memories

N. Korneev, H. Veenhuis, K. Buse, and E. Krätzig, "Thermal fixing of holograms and their electrically assisted development in barium calcium titanate crystals," J. Opt. Soc. Am. B 18, 1570-1577 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971). [CrossRef]
  2. J. J. Amodei, W. Phillips, and D. L. Staebler, “Improved electrooptic materials and fixing techniques for holographic recording,” Appl. Opt. 11, 390–396 (1972). [CrossRef] [PubMed]
  3. H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3,”Solid State Commun. 40, 543–545 (1981). [CrossRef]
  4. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, “Origin of thermal fixing in photorefractive lithium nioibate crystals,” Phys. Rev. B 56, 1225–1235 (1997). [CrossRef]
  5. P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987). [CrossRef]
  6. A. Yariv, S. S. Orlov, and G. A. Rakuljic, “Holographic storage dynamics in lithium niobate: theory and experiment,” J. Opt. Soc. Am. B 13, 2513–2523 (1996). [CrossRef]
  7. B. I. Sturman, M. Carrascosa, F. Agullo-Lopez, and J. Limeres, “Theory of high-temperature photorefractive phenomena in LiNbO3 crystals and applications to the experiment,” Phys. Rev. B 57, 12792–12805 (1998). [CrossRef]
  8. D. Kirillov and J. Feinberg, “Fixable complementary gratings in photorefractive BaTiO3,” Opt. Lett. 16, 1520–1522 (1991). [CrossRef] [PubMed]
  9. D. Zhang, Y. Zhang, C. Li, Y. Chen, and Y. Zhu, “Thermal fixing of holographic grating in BaTiO3,” Appl. Opt. 34, 5241–5246 (1995). [CrossRef] [PubMed]
  10. Y. Tomita and S. Matsushima, “Origin of temperature-dependent diffraction efficiency in self-enhanced readout from thermally fixed gratings in photorefractive barium titanate,” J. Opt. Soc. Am. B 14, 2877–2884 (1997). [CrossRef]
  11. Y. Tomita, “On the nonphotoactive ionic species for thermal fixing of volume holograms in undoped barium titanate,” Jpn. J. Appl. Phys. 38, 440–442 (1999). [CrossRef]
  12. E. Krätzig and R. Orlowski, “LiTaO3 as holographic storage material,” Appl. Phys. 15, 133–139 (1978). [CrossRef]
  13. L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1989). [CrossRef]
  14. G. Montemezzani and P. Günter, “Thermal hologram fixing in pure and doped KNbO3 crystals,” J. Opt. Soc. Am. B 7, 2323–2328 (1990). [CrossRef]
  15. G. Montemezzani, M. Zgonik, and P. Günter, “Photorefractive charge compensation at elevated temperatures and application to KNbO3,” J. Opt. Soc. Am. B 10, 171–185 (1993). [CrossRef]
  16. V. Leyva, D. Engin, X. Tong, M. Tong, A. Yariv, and A. Agranat, “Fixing of photorefractive volume holograms in K1−yLiyTa1−xO3,” Opt. Lett. 20, 1319–1321 (1995). [CrossRef] [PubMed]
  17. A. Y. Liu, M. C. Bashaw, L. Hesselink, M. Lee, and R. S. Feigelson, “Observation and thermal fixing of holographic gratings in lead barium niobate crystal,” Opt. Lett. 22, 187–189 (1997). [CrossRef] [PubMed]
  18. T. Imai, S. Yagi, and H. Yamazaki, “Thermal fixing of photorefractive holograms in KTa1−xNbxO3 and its relation to proton concentration,” J. Opt. Soc. Am. B 13, 2524–2529 (1996). [CrossRef]
  19. X. Tong, M. Zhang, A. Yariv, and A. Agranat, “Diffusion of hydrogen in K1−xLiyTa1−yNbxO3 doped crystals,” Appl. Phys. Lett. 69, 3345–3347 (1996). [CrossRef]
  20. Ch. Kuper, R. Pankrath, and H. Hesse, “Growth and dielectric properties of congruently melting Ba1−xCaxTiO3,” Appl. Phys. A 65, 301–305 (1997). [CrossRef]
  21. C. Kuper, K. Buse, U. van Stevendaal, M. Weber, T. Leidlo, H. Hesse, and E. Krätzig, “Electro-optic and photorefractive properties of ferroelectric barium-calcium titanate crystals,” Ferroelectrics 208, 213–223 (1998). [CrossRef]
  22. H. Veenhuis, T. Börger, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Light-induced charge transport properties of photorefractive barium-calcium titanate crystals doped with iron,” J. Appl. Phys. 88, 1042–1049 (2000). [CrossRef]
  23. F. Rickermann, S. Riehemann, K. Buse, D. Dirksen, and G. von Bally, “Diffraction efficiency enhancement of holographic gratings in Bi12Ti0.76V0.24O20 crystals after recording,” J. Opt. Soc. Am. B 13, 2299–2305 (1996). [CrossRef]
  24. I. Nee, M. Müller, and K. Buse, “Development of thermally fixed photorefractive holograms without light,” Appl. Phys. B 72, 195–200 (2001). [CrossRef]
  25. N. Korneev, D. Mayorga, S. Stepanov, H. Veenhuis, K. Buse, C. Kuper, H. Hesse, and E. Krätzig, “Holographic and non-steady state photocurrent characterization of photorefractive barium-calcium titanate,” Opt. Commun. 160, 98–102 (1999). [CrossRef]
  26. N. Korneev, D. Mayorga, S. Stepanov, A. Gerwens, K. Buse, and E. Krätzig, “Characterization of photorefractive strontium-barium niobate with non-steady state holographic photocurrents,” Opt. Commun. 146, 215–219 (1998). [CrossRef]
  27. K. Buse, S. Kämper, J. Frejlich, R. Pankrath, and K. H. Ringhofer, “Tilting, of holograms in photorefractive Sr0.61Ba0.39Nb2O6 crystals by self-diffraction,” Opt. Lett. 20, 2249–2251 (1995). [CrossRef]
  28. R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing process in LiNbO3,” J. Appl. Phys. 77, 308–312 (1995). [CrossRef]
  29. L. Arizmendi, E. M. Miguel-Sanz, and M. Carrascosa, “Lifelines of thermally fixed holograms in LiNbO3:Fe crystals,” Opt. Lett. 23, 960–962 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited