OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 11 — Nov. 1, 2001
  • pp: 1578–1586

Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers

Alphan Sennaroglu  »View Author Affiliations

JOSA B, Vol. 18, Issue 11, pp. 1578-1586 (2001)

View Full Text Article

Acrobat PDF (183 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A systematic and rigorous method for the analysis and optimization of Cr4+-doped solid-state lasers subject to lifetime thermal loading is described. First, a figure of merit is derived to identify the important parameters that influence the strength of this effect. Next, a theoretical model based on rate-equation analysis is presented for threshold and efficiency calculations. The method is then applied to the analysis of Cr4+:forsterite and Cr4+:YAG lasers. Experimental pump absorption, laser threshold, and laser efficiency data are evaluated to determine the best-fit values of the absorption, emission, and excited-state absorption cross sections for the two laser media. Best-fit cross section values are then used to determine the optimum crystal length, crystal absorption, and resonator reflectivity that maximize the laser output power. Finally, the optimization algorithm is applied to the study of a hypothetical solid-state gain medium to investigate how the optimum crystal and resonator parameters vary as a function of absorption and emission cross sections.

© 2001 Optical Society of America

OCIS Codes
(140.3600) Lasers and laser optics : Lasers, tunable
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(140.6810) Lasers and laser optics : Thermal effects
(160.6990) Materials : Transition-metal-doped materials

Alphan Sennaroglu, "Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers," J. Opt. Soc. Am. B 18, 1578-1586 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Sennaroglu and B. Pekerten, “Experimental and numerical investigation of thermal effects in end-pumped Cr4+:forsterite lasers near room temperature,” IEEE J. Quantum Electron. 34, 1996–2005 (1998).
  2. V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagashi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
  3. N. B. Angert, N. I. Borodin, V. M. Garmash, V. A. Zhitnyuk, A. G. Okhrimchuk, O. G. Siyuchenko, and A. V. Shestakov, “Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm,” Sov. J. Quantum Electron. 18, 73–74 (1988).
  4. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986).
  5. V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, I. I. Mishkel, M. L. Meilman, B. J. Minkov, and A. P. Shkandarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dubé and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 26–34.
  6. Cr4+:YAG data sheet (Ingcrys Laser Systems, Ltd., Bucks, England).
  7. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 78th ed. (CRC Press, Boca Raton, Fla., 1997–1998), p. 12–196.
  8. T. J. Carrig and C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
  9. G. M. Zverev and A. V. Shestakov, “Tunable near-infrared oxide crystal lasers,” in Tunable Solid-State Lasers, M. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 66–70.
  10. A. Sennaroglu, “cw thermal loading in saturable absorbers: theory and experiment,” Appl. Opt. 36, 9528–9535 (1997).
  11. A. Sennaroglu, “Comparative experimental study of thermal loading in Cr4+:forsterite lasers,” Appl. Opt. 37, 1627–1634 (1998).
  12. J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, and D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE J. Quantum Electron. 30, 2612–2616 (1994).
  13. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
  14. B. W. Woods, S. A. Payne, J. E. Marion, R. S. Hughes, and L. E. Davis, “Thermomechanical and thermo-optical properties of the LiCaAlF6:Cr3+ laser material,” J. Opt. Soc. Am. B 8, 970–977 (1991).
  15. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
  16. R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33, 609–617 (1997).
  17. P. F. Moulton, “An investigation of the Co:MgF2 laser system,” IEEE J. Quantum Electron. 21, 1582–1595 (1985).
  18. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials. A Handbook (Wiley, New York, 1997), p. 248.
  19. Ref. 9, p. 4–134.
  20. L. L. Chase and E. W. Van Stryland, “Nonlinear optical properties,” in Optical Materials, Suppl. 2 of CRC Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC Press, Boca Raton, Fla., 1995), p. 278.
  21. A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
  22. A. Sennaroglu, C. R. Pollock, and H. Nathel, “Efficient continuous-wave chromium-doped YAG laser,” J. Opt. Soc. Am. B 12, 930–937 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited