OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 11 — Nov. 1, 2001
  • pp: 1659–1666

Theoretical studies for special states of cascaded quadratic nonlinear effects

Xue-Ming Liu and Ming-De Zhang  »View Author Affiliations


JOSA B, Vol. 18, Issue 11, pp. 1659-1666 (2001)
http://dx.doi.org/10.1364/JOSAB.18.001659


View Full Text Article

Enhanced HTML    Acrobat PDF (240 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

From the viewpoint of photon flux, the evolution of phases and intensities in the eigenmode state in three-wave mixing (TWM) is studied, and the requirements for the initial phases and incident intensities in this state are derived. Another special state in which there is an exchange of intensities without a phase change in the TWM is also investigated, for the first time to the authors’ knowledge. By use of the two special states of cascaded quadratic nonlinear effects, an all-optical switch based on the push–pull Sagnac loop is proposed, and its properties are calculated. The numerical results show that the switch is quite stable, and the intensity and phase of the output signal can easily be established and controlled.

© 2001 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(130.3730) Integrated optics : Lithium niobate
(190.0190) Nonlinear optics : Nonlinear optics
(190.7070) Nonlinear optics : Two-wave mixing
(230.4320) Optical devices : Nonlinear optical devices

Citation
Xue-Ming Liu and Ming-De Zhang, "Theoretical studies for special states of cascaded quadratic nonlinear effects," J. Opt. Soc. Am. B 18, 1659-1666 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-11-1659


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Vidakovic, D. J. Lovering, J. A. Levenson, J. Webijorn, and P. St. J. Russell, “Larger nonlinear phase shift owing to cascaded χ(2) in quasi-phase-matched bulk LiNbO3,” Opt. Lett. 22, 277–279 (1997). [CrossRef]
  2. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse, compression and solitions,” Opt. Commun. 28, 1691–1740 (1996).
  3. G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73, 136–138 (1998). [CrossRef]
  4. J. A. Armstrong, N. Bloembergen, J. Duculing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  5. G. Assanto and I. Torelli, “Cascading effects in type II second-harmonic generation: application to all-optical processing,” Opt. Commun. 119, 143–148 (1995). [CrossRef]
  6. G. S. Kanter and P. Kumar, “Optical devices based on internally seeded cascaded nonlinearities,” IEEE J. Quantum Electron. 35, 891–896 (1999). [CrossRef]
  7. K. Gallo and G. Assanto, “All-optical diode based on second-harmonic generation in an asymmetric waveguide,” J. Opt. Soc. Am. B 16, 267–269 (1999). [CrossRef]
  8. X. Liu, L. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2)(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999). [CrossRef]
  9. A. E. Kaplan, “Eigenmodes of χ(2) wave mixings: cross-induced second-order nonliear refraction,” Opt. Lett. 18, 1223–1225 (1993). [CrossRef] [PubMed]
  10. G. Baldenberger, S. L. Rochelle, and A. Villeneuve, “Cascaded nonlinear phase shift in a novel anharmoic phase-mismatch configuration,” J. Opt. Soc. Am. B 16, 1894–1903 (1999). [CrossRef]
  11. A. Kobyakov and F. Lederer, “Cascading of quadratic nonlinearities: an analytical study,” Phys. Rev. A 54, 3455–3471 (1996). [CrossRef] [PubMed]
  12. H. Kanbara, H. Itoh, M. Asobe, K. Noguchi, H. Miyazawa, T. Yanagawa, and I. Yokohama, “All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide,” IEEE Photonics Technol. Lett. 11, 328–330 (1999). [CrossRef]
  13. M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, D. Philen, S. Kosinski, K. R. Parameswaran, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 12, 82–84 (2000). [CrossRef]
  14. M. J. T. Milton, “General expressions for the efficiency of phase-matched and nonphase-matched second-order nonlinear interactions between plane waves,” IEEE J. Quantum Electron. 28, 739–749 (1992). [CrossRef]
  15. G. G. Luther, M. S. Alber, J. E. Marsden, and J. M. Robbins, “Geometric analysis of optical frequency conversion and its control in quadratic nonlinear media,” J. Opt. Soc. Am. B 17, 932–941 (2000). [CrossRef]
  16. T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265–1270 (1990). [CrossRef]
  17. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi phase-matched second-harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  18. A. Kobyakov, E. Schmidt, and F. Lederer, “Effect of group-velocity mismatch on amplitude and phase modulation of picosecond pulses in quadratically nonlinear media,” J. Opt. Soc. Am. B 14, 3242–3252 (2000). [CrossRef]
  19. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of the second-order nonlinear optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997). [CrossRef]
  20. C. N. Ironside, J. S. Aitchison, and J. M. Arnold, “An all-optical switch employing the cascaded second-order nonlinear effect,” IEEE J. Quantum Electron. 29, 2650–2654 (1993). [CrossRef]
  21. G. D. Landry and T. A. Maldonado, “Switching and second harmonic generation in a mirrorless configuration,” J. Lightwave Technol. 17, 316–327 (1999). [CrossRef]
  22. K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low power all-optical gate based on sum frequency mixing in APE wave guides in PPLN,” IEEE Photonics Technol. Lett. 12, 654–657 (2000). [CrossRef]
  23. H.-F. Chou, C.-F. Lin, and G.-C. Wang, “An iterative finite difference beam propagation method for modeling second-order nonlinear effects in optical waveguides,” J. Lightwave Technol. 16, 1686–1693 (1998). [CrossRef]
  24. The initial phases of the signal and the SH counterpropagating in the medium meet the requirements for θ that (0)=Φ3(0)–2Φ2(0)=0, π and that their photon fluxes correspond to Eq. (6). In Fig. 5, if θ(0)=0 for clockwise propagation, then θ(0)=π for anticlockwise propagation by the action of the half wave.
  25. H. Y. Rhy, B. Y. Kim, and H. W. Lee, “Self-switching with a nonlinear birefringent loop mirror,” IEEE J. Quantum Electron. 36, 89–93 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited