OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 11 — Nov. 1, 2001
  • pp: 1711–1717

Er3+-doped crystals: frequency analysis of nonlinear energy transfer

Luigi Palatella, Alberto Di Lieto, Paolo Minguzzi, Alessandra Toncelli, and Mauro Tonelli  »View Author Affiliations

JOSA B, Vol. 18, Issue 11, pp. 1711-1717 (2001)

View Full Text Article

Acrobat PDF (167 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have studied the room temperature behavior of the Er3+:4S3/2 fluorescence of three Er3+-doped crystals: Er3+:YLF with 30% and 8.5% doping and Er3+:BaYF doped at 20%. We studied the fluorescence by pumping with an 800-nm laser beam sinusoidally modulated in intensity in the range 10–1000 Hz, and we observed the presence of a second harmonic of modulation in the time evolution of the intensity of fluorescence. Second-harmonic intensity was also predicted by means of numerical integration of the rate equations that describe our system. Both experimental data and theoretical prediction show that the intensity reaches a maximum value at a modulation frequency that depends on the pump rate and on upconversion parameter α. This dependence allows us to obtain the value of α. To estimate this value we also measured the lifetimes of the various manifolds involved in the upconversion process.

© 2001 Optical Society of America

OCIS Codes
(190.7220) Nonlinear optics : Upconversion
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6250) Spectroscopy : Spectroscopy, condensed matter
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6420) Spectroscopy : Spectroscopy, nonlinear

Luigi Palatella, Alberto Di Lieto, Paolo Minguzzi, Alessandra Toncelli, and Mauro Tonelli, "Er3+-doped crystals: frequency analysis of nonlinear energy transfer," J. Opt. Soc. Am. B 18, 1711-1717 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. C. Wright, “Up-conversion and excited state energy transfer in rare-earth doped materials,” in Radiationless Processes in Molecules and Condensed Phases, F. K. Fong, ed. Vol. 15 of Topics in Applied Physics (Springer-Verlag, Berlin, 1976), pp. 239–295.
  2. F. E. Auzel, “Materials and devices using double-pumped phosphorus with energy transfer,” Proc. IEEE 61, 758–786 (1973).
  3. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, Boca Raton, Fla., 1996).
  4. M. Pollnau, Th. Graf, E. Balmer, W. Luthy, and H. P. Weber, “Explanation of the cw operation of the Er+3 3-μm crystal laser,” Phys. Rev. A 49, 3990–3996 (1994).
  5. M. Pollnau, “The route toward a diode-pumped 1-W erbium 3-μm fiber laser,” IEEE J. Quantum Electron. 33, 1982–1990 (1997).
  6. M. Pollnau, W. Luthy, and H. P. Weber, “Population mechanisms of the green Er3+:LiYF4 laser,” J. Appl. Phys. 77, 6128–6134 (1995).
  7. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61, 3337–3346 (2000).
  8. J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61, 151–158 (1995).
  9. H. Chou and H. P. Jenssen, “Upconversion processes in Er-activated solid state laser materials,” in Tunable Solid State Lasers, M. L. Shand and H. P. Jenssen, eds., Vol. 5 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 167–174.
  10. R. Micheletti, P. Minguzzi, M. A. Noginov, and M. Tonelli, “Upconversion luminescence of Er and Cr in YSGG laser crystals,” J. Opt. Soc. Am. B 11, 2095–2099 (1994).
  11. M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Nonlinear population processes of Er laser levels in chromium-doped laser crystals,” Opt. Quantum Electron. 22, S61–S74 (1990).
  12. R. Kapoor, C. S. Friend, A. Biswas, and P. N. Prasad, “Highly efficient infrared-to-visible energy upconversion in Er3+:Y2O3,” Opt. Lett. 5, 338–430 (2000).
  13. S. R. Lüthi, M. Pollnau, H. U. Güdel, and M. P. Hehlen, “Near-infrared to visible upconversion in Er3+-doped Cs3Lu2Cl9, Cs3Lu2Br9, and Cs3Y2I9 excited at 1.54 μm,” Phys. Rev. B 60, 162–178 (1999).
  14. G. S. Maciel, C. B. de Araùjo, Y. Messaddeq, and M. A. Aegerter, “Frequency up-conversion in Er3+-doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55, 6335–6342 (1997).
  15. B. R. Reddy and P. Venkateswarlu, “Infrared to visible energy upconversion in Er3+-doped oxide glass,” Appl. Phys. Lett. 64, 1327–1329 (1994).
  16. C. T. M. Ribeiro, A. R. Zanatta, L. A. O. Nunes, Y. Messaddeq, and M. A. Aegerter, “Optical spectroscopy of Er3+ and Yb3+ co-doped fluoroindate glasses,” J. Appl. Phys. 83, 2256–2260 (1998).
  17. M. Tsuda, K. Soga, H. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85, 29–37 (1999).
  18. C. B. de Araùjo, L. S. Menezes, G. S. Maciel, L. H. Acioli, A. S. L. Gomes, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Infrared-to-visible cw frequency upconversion in Er3+-doped fluoroindate glasses,” Appl. Phys. Lett. 68, 602–604 (1996).
  19. A. Toncelli, A. Di Lieto, P. Minguzzi, and M. Tonelli, “Discovering energy paths in laser crystals,” Opt. Lett. 22, 1165–1167 (1997).
  20. D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55, 8881–8886 (1997).
  21. D. S. Knowles and H. P. Jenssen, “Upconversion versus Pr-deactivation for efficient 3 μm laser operation in Er,” IEEE J. Quantum Electron. 28, 1197–1207 (1992).
  22. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited