OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 11 — Nov. 1, 2001
  • pp: 1732–1741

Mechanisms of spectral shift in ultrashort-pulse laser oscillators

Vladimir L. Kalashnikov, Evgeni Sorokin, and Irina T. Sorokina  »View Author Affiliations

JOSA B, Vol. 18, Issue 11, pp. 1732-1741 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (196 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A number of factors that influence spectral position of ultrashort pulses in mode-locked lasers have been identified: high-order dispersion, gain saturation, reabsorption from the ground state, and stimulated Raman scattering. Using the one-dimensional numerical model for the simulation of the laser cavity, we analyze the relative contributions of different factors to the spectral position of the mode-locked pulses using the example of the Cr:LiSGaF laser. In this case the Raman effect provides the largest self-frequency shift from the gain peak (up to 60 nm), followed by the gain saturation (∼25 nm), whereas the high-order dispersion contribution is insignificant (∼5 nm). The results of the simulation are in good agreement with experimental data, confirming that stimulated Raman scattering is the dominant mechanism that causes the pulse self-frequency shift.

© 2001 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.5550) Ultrafast optics : Pulses

Vladimir L. Kalashnikov, Evgeni Sorokin, and Irina T. Sorokina, "Mechanisms of spectral shift in ultrashort-pulse laser oscillators," J. Opt. Soc. Am. B 18, 1732-1741 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipöcs, “14-fs pulse generation in Kerr-lens mode-locked prismless Cr:LiSGaF and Cr:LiSAF lasers: observation of pulse self-frequency shift,” Opt. Lett. 22, 1716–1718 (1997). [CrossRef]
  2. C. Chudoba, J. G. Fjimoto, E. P. Ippen, H. A. Haus, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, and T. Tschudi, “All-solid-state Cr:forsterite laser generating 14-fs pulses at 1.3 μm,” Opt. Lett. 26, 292–294 (2001). [CrossRef]
  3. S. Uemura and K. Torizuka, “Generation of 12-fs pulses from a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser,” Opt. Lett. 24, 780–782 (1997). [CrossRef]
  4. I. T. Sorokina, E. Sorokina, E. Wintner, A. Cassanho, H. P. Jenssen, and R. Szipöcs, “Sub-20 fs pulse generation from the mirror dispersion controlled Cr:LiSGaF and Cr:LiSAF lasers,” Appl. Phys. B 65, 245–253 (1997). [CrossRef]
  5. I. T. Sorokina, E. Sorokin, and E. Wintner, “Femtosecond Cr:LiSGaF and Cr:LiSAF lasers: phenomena and limitations in the 15-fs regime,” in ICONO’98: Ultrafast Phenomena and Interaction of Superstrong Laser Fields with Matter, Proc. SPIE 3735, 2–21 (1999). [CrossRef]
  6. Ch. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994). Please note that due to typographical error the word mode locked has been substituted by ed throughout this paper! [CrossRef]
  7. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (Springer, New York, 1992), Chap. 1.
  8. J. Jasapara, V. L. Kalashnikov, D. O. Krimer, I. G. Poloyko, M. Lenzner, and W. Rudolph, “Automodulation in Kerr-lens mode-locked solid-state laser,” J. Opt. Soc. Am. B 17, 319–326 (2000). [CrossRef]
  9. H. A. Haus, I. Sorokina, and E. Sorokin, “Raman-induced redshift of ultrashort mode-locked laser pulses,” J. Opt. Soc. Am. B 15, 223–231 (1998). [CrossRef]
  10. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, and H. P. Jenssen, “Raman induced pulse self-frequency shift in the sub-20 fs Kerr-lens mode-locked Cr:LiSGaF and Cr:LiSAF lasers,” in Advanced Solid State Lasers, W. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington D.C., 1998), p. 359.
  11. K. M. Gäbel, R. Lebert, R. Poprawe, and A. Valster, “Signature of the Raman self-frequency shift on the autocorrelation of sub-20-fs pulses from colquiriite lasers,” in Conference on Lasers and Electro-Optics, Vol. 39 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), p. 484.
  12. V. L. Kalashnikov, V. P. Kalosha, V. P. Mikhailov, and I. G. Poloyko, “Self-mode locking of four-mirror cavity solid-state lasers by Kerr self-focusing,” J. Opt. Soc. Am. B 12, 462–467 (1995). [CrossRef]
  13. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28, 2086–2096 (1992). [CrossRef]
  14. J. Herrmann and B. Wilhelmi, Laser fur Ultrakurze Lichtimpulse (Akademie-Verlag, Berlin, 1984).
  15. R. L. Sutherland; Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996), p. 305.
  16. Q. Lin and I. Sorokina, “High-order dispersion effects in solitary mode-locked lasers: side-band generation,” Opt. Commun. 153, 285–288 (1998). [CrossRef]
  17. I. P. Christov, M. M. Murnane, H. C. Kapteyn, Z. Jianping, and P. H. Chung, “Fourth-order dispersion-limited solitary pulses,” Opt. Lett. 19, 1465–1467 (1994). [CrossRef] [PubMed]
  18. A. Sennaroglu, C. R. Pollock, and H. Nathel, “Continuous-wave self-mode-locked operation of a femtosecond Cr4+:YAG laser,” Opt. Lett. 19, 390–392 (1994). [PubMed]
  19. Y. Ishida and K. Naganuma, “Characteristics of femtosecond pulses near 1.5 μm in a self-mode-locked Cr4+:YAG,” Opt. Lett. 19, 2003–2005 (1994). [CrossRef] [PubMed]
  20. Zh. Zhigang, T. Nakagawa, K. Torizuka, T. Sugaya, and K. Kobayashi, “Self-starting mode-locked Cr4+:YAG laser with a low-loss broadband semiconductor saturable-absorber mirror,” Opt. Lett. 24, 1768–1770 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited