OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 11 — Nov. 1, 2001
  • pp: 1747–1750

Tilted-front-interface chirped mirrors

Gabriel Tempea, Vladislav Yakovlev, Biljana Bacovic, Ferenc Krausz, and Kárpát Ferencz  »View Author Affiliations


JOSA B, Vol. 18, Issue 11, pp. 1747-1750 (2001)
http://dx.doi.org/10.1364/JOSAB.18.001747


View Full Text Article

Acrobat PDF (164 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

One can achieve perfect impedance matching of dispersive mirrors to the environment over an arbitrarily broad spectral range by tilting the front interface with respect to internal interfaces of the multilayer. As a result, by drawing on this concept one can increase the bandwidth over which the dispersion of the mirrors can be controlled to a full optical octave, limited only by technological constraints (number of layers that can be coated and accuracy of thickness control). Additionally, the undesired fluctuations of the group-delay dispersion as a function of optical frequency are dramatically reduced for tilted-front-interface mirrors compared with conventional chirped mirrors.

© 2001 Optical Society of America

OCIS Codes
(310.6860) Thin films : Thin films, optical properties
(320.0320) Ultrafast optics : Ultrafast optics
(320.5520) Ultrafast optics : Pulse compression

Citation
Gabriel Tempea, Vladislav Yakovlev, Biljana Bacovic, Ferenc Krausz, and Kárpát Ferencz, "Tilted-front-interface chirped mirrors," J. Opt. Soc. Am. B 18, 1747-1750 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-11-1747


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond modelocked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
  2. A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740–743 (2000).
  3. T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
  4. U. Morgner, R. Ell, G. Metzler, F. X. Kärtner, J. G. Fujimoto, and E. P. Ippen, in Conference on Lasers and Electro-Optics–Europe, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper CPD2.2.
  5. Z. Cheng, G. Tempea, T. Brabec, K. Ferencz, Ch. Spielmann, and F. Krausz, “Generation of intense diffraction-limited white light and 4-fs pulses,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. A. Wiesma, and W. Zinth, eds. (Springer-Verlag, 1998), pp. 8–10.
  6. A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipöcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997).
  7. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997).
  8. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
  9. J. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
  10. L. Xu, M. W. Kimmel, P. O’Shea, R. Trebino, J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Measuring the intensity and phase of ultrabroadband continuum,” in Ultrafast Phenomena XII, T. Elsaesser, S. Mukamel, M. M. Murnane, and N. F. Scherer, eds. (Springer-Verlag, Berlin, 2000), pp. 129–131.
  11. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201–203 (1994).
  12. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett. 22, 831–833 (1997).
  13. R. Szipöcs, A. Köházi-Kis, “Theory and design of chirped dielectric laser mirrors,” Appl. Phys. B 65, 115–135 (1997).
  14. G. Tempea, F. Krausz, Ch. Spielmann, and K. Ferencz, “Dispersion control over 150 THz with chirped dielectric mirrors,” IEEE J. Quantum Electron. 4, 193–196 (1998).
  15. V. Laude and P. Tournois, “Chirped-mirror pairs for ultra-broadband dispersion control,” in Conference on Lasers and Electro-Optics, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CTuR.
  16. G. Tempea and F. Krausz, “Dispersion management over one octave with tilted-front-interface chirped mirrors,” in Ultrafast Phenomena XII, T. Elsaesser, S. Mukamel, M. M. Muranane, and N. F. Scherer, eds. (Springer-Verlag, Berlin, 2000), pp. 65–67.
  17. L. Gallman, N. Matuschek, D. H. Sutter, V. Sceuer, G. Angelow, T. Tschudi, G. Steinmeyer, and U. Keller, “Smooth dispersion compensation: novel chirped mirrors with suppressed dispersion oscillations,” in Ultrafast Phenomena XII, T. Elsaesser, S. Mukamel, M. M. Murnane, and N. F. Scherer, eds. (Springer-Verlag, Berlin, 2000), pp. 62–64.
  18. N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71, 509–522 (2000).
  19. F. Gires and P. Tournois, “Interférometre utilisable pour la compensation d’impulsions lumineuses modulées en fréquence,” C. R. Hebd. Seances Acad. Sci. 258, 6112–6115 (1964).
  20. W. H. Knox, M. N. Pearson, K. D. Li, and C. A. Hirlimann, “Interferometric measurements of femtosecond group delay in optical components,” Opt. Lett. 13, 574–576 (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited