OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 12 — Dec. 1, 2001
  • pp: 1780–1792

Analysis and design of supercontinuum pulse generation in a single-mode optical fiber

Kunihiko Mori, Hidehiko Takara, and Satoki Kawanishi  »View Author Affiliations


JOSA B, Vol. 18, Issue 12, pp. 1780-1792 (2001)
http://dx.doi.org/10.1364/JOSAB.18.001780


View Full Text Article

Acrobat PDF (686 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an analysis and describe the design of supercontinuum (SC) pulse generation in a single-mode optical fiber. SC generation with a dispersion-decreasing fiber with a convex dispersion profile is contrasted with other approaches to obtaining conditions for generating a flat, broadened spectrum. We present general criteria for SC generation by introducing normalized parameters that allow the shape of the SC spectrum to be invariant for several SC-generating fibers and optical pump pulses. Based on these results, we designed a SC fiber and experimentally generated SC pulses that were in good agreement with theory.

© 2001 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

Citation
Kunihiko Mori, Hidehiko Takara, and Satoki Kawanishi, "Analysis and design of supercontinuum pulse generation in a single-mode optical fiber," J. Opt. Soc. Am. B 18, 1780-1792 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-12-1780


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
  2. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, “Broad bandwidths from frequency-shifting solitons in fibers,” Opt. Lett. 14, 370–372 (1989).
  3. K. Mori, T. Morioka, H. Takara, and M. Saruwatari, “Continuously tunable optical pulse generation utilizing supercontinuum in an optical fiber pumped by amplified gain-switched LD pulses,” in Optical Amplifiers and Their Applications, Vol. 14 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper MD11.
  4. H. Takara, S. Kawanishi, A. Yokoo, S. Tomaru, and M. Saruwatari, “Eye-diagram measurement of 100 Gbit/s optical signal using optical sampling,” in Proceedings of the European Conference on Optical Communication (Telenor R&D, Kjeller, Norway, 1996), pp. 4.7–4.10, paper ThB.1.2.
  5. K. Mori, T. Morioka, and M. Saruwatari, “Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical fiber pumped by a 1.5 μm compact laser source,” IEEE Trans. Instrum. Meas. 44, 712–715 (1995).
  6. T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s × 10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett. 32, 906–907 (1996).
  7. S. Kawanishi, H. Takara, K. Uchiyama, I. Shake, O. Kamatani, and H. Takahashi, “1.4 Tbit/s (200 Gbit/s×7 channel), 50 km OTDM-WDM transmission experiment,” in Proceedings of the Optoelectronics and Communications Conference (Institute of Electronics, Information and Communication Engineers, Tokyo, 1998), pp. 14–15, paper PDP2–2.
  8. S. Kawanishi, H. Takara, K. Uchiyama, I. Shake, and K. Mori, “3 Tbit/s (160 Gbit/s × 19 channel) optical TDM and WDM transmission experiment,” Electron. Lett. 35, 826–827 (1999).
  9. J. Kim, Ö. Boyras, and M. N. Islam, “150+ channel ultra-DWDM source with N×10 GHz spacing utilizing longitudinal mode slicing of supercontinuum,” in Optical Fiber Communications Conference (OFC), Vol. 37 of OSA trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper ThA2.
  10. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, K. Jinguji, Y. Inoue, T. Shibata, T. Morioka, and K.-I. Sato, “Over 1000 channel optical frequency chain generation from a single supercontinuum source with 12.5 GHz channel spacing for DWDM and frequency standards,” in Proceedings of the European Conference on Optical Communication (VDE Verlag, Berlin, 2000), paper PD 3.1.
  11. E. Yamada, H. Takara, T. Ohara, K. Sato, and T. Morioka, “A high SNR, 150 ch supercontinuum cw optical source with precise 25 GHz spacing for 10 Gbit/s DWDM systems,” in Optical Fiber Communications Conference (OFC), Vol. XX of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper ME2.
  12. H. Takara, E. Yamada, T. Ohara, K. Sato, K. Jinguji, Y. Inoue, T. Shibata, and T. Morioka, “106×10 Gbit/s, 25 GHz-spaced, 640 km DWDM transmission employing a single supercontinuum multi-carrier source,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper PD11.
  13. J. W. Lou, T. J. Xia, O. Boyraz, C.-X. Shi, G. A. Nowak, and M. N. Islam, “Broader and flatter supercontinuum spectra in dispersion tailored fibers,” in Optical Fiber Communication Conference, Vol. 6 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 32–34, paper TuH6.
  14. T. Okuno, M. Ohnishi, M. Nishimura, and M. Mogi, “Study on optical fibers suitable for generating supercontinuum pulses with high efficiency,” in Proceedings of the Australian Conference on Optical Fiber Technology (Information Gatekeepers, Boston, 1996), pp. 121–124.
  15. T. Okuno, M. Onishi, and M. Nishimura, “Dispersion-flattened and decreasing fiber for ultra-broadband supercontinuum generation,” in Proceedings of the European Conference on Optical Communication, postdeadline papers (Institution of Electrical Engineers, London, 1997), pp. 77–80.
  16. T. Okuno, M. Onishi, and M. Nishimura, “Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber,” IEEE Photon. Technol. Lett. 10, 72–74 (1998).
  17. K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33, 1806–1808 (1997).
  18. Y. Takushima, and K. Kikuchi, “Analysis of super-continuum generation in positive group-velocity dispersion fibers,” in Proceedings of the 1997 Electronics Society Conference of IEICE (Institute of Electronics, Information and Communication Engineers, Tokyo, 1997) p. 250, paper C-4–4 (in Japanese).
  19. F. Futami, Y. Takushima, and K. Kikuchi, “Generation of supercontinuum with extremely wideband and flat spectra from a dispersion-flattened fiber in the positive dispersion profile,” in Proceedings of the Optoelectronics and Communications Conference (Institute of Electronics, Information and Communication Engineers, Tokyo, 1998), pp. 378–379, paper 15C3–2.
  20. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
  21. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
  22. K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, “cw three-wave mixing in single-mode optical fibers,” J. Opt. Soc. Am. B 3, 1018–1024 (1978).
  23. C. Pask and A. Vatarescu, “Spectral approach to pulse propagation in a dispersive nonlinear medium,” J. Appl. Phys. 3, 5098–5106 (1986).
  24. P. L. François, “Nonlinear propagation of ultrashort pulses in optical fibers: total field formulation in the frequency domain,” J. Opt. Soc. Am. B 8, 276–293 (1991).
  25. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).
  26. T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Nearly penalty-free, <4 ps supercontinuum Gbit/s pulse generation over 1535–1560 nm,” Electron. Lett. 30, 790–791 (1994).
  27. T. Morioka, S. Kawanishi, K. Mori, and M. Saruwatari, “Transform-limited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum,” Electron. Lett. 30, 1166–1167 (1994).
  28. T. Morioka, S. Kawanishi, H. Takara, O. Kamatani, M. Yamada, T. Kanamori, K. Uchiyama, and M. Saruwatari, “100 Gbit/s×4ch, 100 km repeaterless TDM-WDM transmission using a single supercontinuum source,” Electron. Lett. 32, 468–469 (1996).
  29. P. V. Mamyshev, P. G. J. Wigley, J. Wilson, G. I. Stegeman, V. A. Semenov, E. M. Dianov, and S. I. Miroshnichenko, “Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response,” Opt. Lett. 14, 1008–1010 (1989).
  30. K. Mori, H. Takara, and S. Kawanishi, “The effect of pump fluctuation in supercontinuum pulse generation,” in Nonlinear Guided Waves and Their Applications, Vol. 5 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 276–278.
  31. L. G. Cohen and W. L. Mammel, “Low-loss quadruple-clad single-mode lightguides with dispersion below 2 ps/km nm over the 1.28 μm–1.65 μm wavelength range,” Electron. Lett. 18, 1023–1024 (1982).
  32. M. Monerie, “Propagation in doubly clad single-mode fibers,” IEEE J. Quantum Electron. QE-18, 535–542 (1982).
  33. P. L. François, “Zero dispersion in attenuation optimized doubly clad fibers,” J. Lightwave Technol. LT-1, 26–37 (1983).
  34. B. Gross and J. T. Manassah, “The spectral distribution and the frequency shift of the supercontinuum,” Phys. Lett. A 160, 261–270 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited