OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 12 — Dec. 1, 2001
  • pp: 1805–1812

Passively Q-switched microchip laser at 1.5 μm

R. Häring, R. Paschotta, R. Fluck, E. Gini, H. Melchior, and U. Keller  »View Author Affiliations


JOSA B, Vol. 18, Issue 12, pp. 1805-1812 (2001)
http://dx.doi.org/10.1364/JOSAB.18.001805


View Full Text Article

Acrobat PDF (297 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a compact laser source in the eye-safe wavelength regime (≈1.5 μm) that produces peak powers up to 10.6 kW at pulse durations of 0.84 ns with a repetition rate exceeding 1 kHz. An Er:Yb:glass microchip laser was passively Q-switched with a semiconductor saturable absorber mirror (SESAM). We investigated SESAM damage under Q-switching conditions and developed an improved SESAM design that can withstand microjoule pulses.

© 2001 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3500) Lasers and laser optics : Lasers, erbium
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3580) Lasers and laser optics : Lasers, solid-state
(230.4320) Optical devices : Nonlinear optical devices

Citation
R. Häring, R. Paschotta, R. Fluck, E. Gini, H. Melchior, and U. Keller, "Passively Q-switched microchip laser at 1.5 μm," J. Opt. Soc. Am. B 18, 1805-1812 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-12-1805


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. J. Zayhowski and A. L. Wilson, “Miniature sources of subnanosecond 1.4–4.3 μm pulses with high peak power,” in Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds., Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 308–311.
  2. J. J. Zayhowski, “Periodically poled lithium niobate optical parametric amplifiers pumped by high-power passively Q-switched microchip lasers,” Opt. Lett. 22, 169–171 (1997).
  3. J. J. Zayhowski, S. C. Buchter, and A. L. Wilson, “Miniature Gain Switched Lasers,” in Advanced Solid State Lasers, eds., Vol. 53 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 308–310.
  4. K. V. Yumashev, I. A. Denisov, N. N. Posnov, V. P. Mikhailov, R. Moncorgé, D. Vivien, B. Ferrand, and Y. Guyot, “Nonlinear spectroscopy and passive Q-switching operation of a Co2+:LaMgAl11O19,” J. Opt. Soc. Am. B 16, 2189–2194 (1999).
  5. P. Thony, B. Ferrand, and E. Molva, “1.55 μm passive Q-switched microchip laser,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 150–153.
  6. K. Spariosu, R. D. Stultz, M. Birnbaum, T. H. Allik, and J. A. Hutchinson, “Er:Ca5(PO4)3F saturable absorber Q switch for the Er:glass laser at 1.53 μm,” Appl. Phys. Lett. 62, 2763–2765 (1993).
  7. R. D. Stultz, M. B. Camargo, and M. Birnbaum, “Passive Q-switch at 1.53 μm using divalent uranium ions in calcium fluoride,” J. Appl. Phys. 78, 2959–2961 (1995).
  8. R. D. Stultz, M. B. Camargo, M. Lawler, D. Rockafellow, and M. Birnbaum, “Diode-Pumped Er:Yb:glass mini-transmitter,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 155–158.
  9. R. D. Stultz, M. B. Camargo, S. T. Montgomery, M. Birnbaum, and K. Spariosu, “U:SrF efficient saturable absorber Q switch for the 1.54 μm erbium:glass laser,” Appl. Phys. Lett. 64, 948–950 (1994).
  10. M. Birnbaum, M. B. Camargo, S. Lee, F. Unlu, and R. D. Stultz, “Co:ZnSe saturable absorber Q switch for the 1.54 μm Er/Yb:glass laser,” Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 148–151.
  11. A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kuleshov, V. P. Mikhailov, V. I. Levchenko, and V. N. Yakimovich, “Cr2+:ZnSe and Co2+:ZnSe saturable-absorber Q switches for 1.54-μm Er:glass,” Opt. Lett. 24, 960–963 (1999).
  12. R. Fluck, R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Eyesafe pulsed microchip laser using semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 72, 3273–3275 (1998).
  13. S. Kück, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections,” Phys. Rev. B 51, 17323–17331 (1995).
  14. A. Diening, P. E.-A. Möbert, and G. Huber, “Diode-pumped continuous-wave, quasi-continuous wave, and Q-switched laser operation of Yb3+, Tm3+:YLiF4 at 1.5 and 2.3 μm,” J. Appl. Phys. 84, 5900–5904 (1998).
  15. R. Brinkmann, W. Sohler, and H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett. 27, 415–416 (1991).
  16. S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63, 425–436 (1996).
  17. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Fergusson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
  18. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
  19. U. Keller, in Nonlinear Optics in Semiconductors II: Semiconductors and Semimetals, E. Garmire and A. Kost, eds. (Academic, Boston, 1999), 59, pp. 211–286.
  20. G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16, 376–388 (1999).
  21. B. Braun, F. X. Kärtner, M. Moser, G. Zhang, U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997).
  22. B. Braun, F. X. Kärtner, U. Keller, J.-P. Meyn, and G. Huber, “Passively Q-switched 180 ps Nd:LSB microchip laser,” Opt. Lett. 21, 405–407 (1996).
  23. R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34 μm Nd:YVO4 microchip laser using semiconductor saturable-absorber mirrors,” Opt. Lett. 22, 991–993 (1997).
  24. J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14, 24–26 (1989).
  25. F. Salin and J. Squier, “Gain guiding in solid-state lasers,” Opt. Lett. 17, 1352–1354 (1992).
  26. J. J. Zayhowski, “Thermal guiding in microchip lasers,” in Advanced Solid-State Lasers, H. P. Jenssen and G. Dube, eds., Vol. 6 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1990), pp. 9–13.
  27. R. Häring, R. Paschotta, E. Gini, H. Melchior, and U. Keller, “Sub-nanosecond pulses from passively Q-switched microchip lasers at 1.53 μm,” in Conference on Lasers and Electro-Optics (CLEO/VS) 1999 OSA Technical Digest Se-ries (Optical Society of America, Washington, D.C., 1999), pp. 518–519.
  28. J. J. Zayhowski, P. L. Kelley, “Optimization of Q-switched Lasers,” IEEE J. Quantum Electron. 27, 2220–2225 (1991).
  29. L. R. Brovelli, U. Keller, T. H. Chiu, “Design and operation of antiresonant Fabry–Perot saturable semiconductor absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311–322 (1995).
  30. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited