OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 12 — Dec. 1, 2001
  • pp: 1832–1840

Nonlinear optical properties of (H+,He+)- implanted planar waveguides in z-cut lithium niobate: annealing effect

A. Boudrioua, J. C. Loulergue, F. Laurell, and P. Moretti  »View Author Affiliations

JOSA B, Vol. 18, Issue 12, pp. 1832-1840 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (289 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Reflection second-harmonic generation from the polished waveguide end face was used to investigate the nonlinear properties of LiNbO3-implanted waveguides fabricated by use of 2-MeV He+ and 1.5-Mev H+ beams. Results were compared with waveguides obtained by protonic exchange in benzoic acid. In contrast to the exchanged sample where the nonlinearity is strongly reduced, the implanted samples showed that the guiding region presents rather the same response as the substrate. The area where the optical barrier is located showed a strongly enhanced second-harmonic signal that was likely to be due to structural modifications in this area. Moreover, the investigation of the annealing effect showed strong interaction of protons with the lattice compared with that of He+ ions.

© 2001 Optical Society of America

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.4400) Nonlinear optics : Nonlinear optics, materials
(230.7370) Optical devices : Waveguides
(230.7390) Optical devices : Waveguides, planar

A. Boudrioua, J. C. Loulergue, F. Laurell, and P. Moretti, "Nonlinear optical properties of (H+, He+)- implanted planar waveguides in z-cut lithium niobate: annealing effect," J. Opt. Soc. Am. B 18, 1832-1840 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Suhara, H. Tazaki, and H. Nishihara, “Measurement of reduction in SHG coefficient of LiNbO3 by proton exchanging,” Electron. Lett. 25, 1326–1328 (1989). [CrossRef]
  2. X. Cao, R. Srivastava, R. V. Ramaswamy, and J. Ntour, “Recovery of second order nonlinearity in annealed proton exchanged LiNbO3,” IEEE Photonics Technol. Lett. 3, 25–27 (1991). [CrossRef]
  3. F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301–303 (1992). [CrossRef]
  4. H. Åhlfeldt, F. Laurell, and G. Arvidson, “Strongly reduced optical nonlinearity in lithium tantalate due to proton exchange,” Electron. Lett. 29, 819–820 (1993). [CrossRef]
  5. M. L. Bortz, L. A. Fyres, and M. M. Fejer, “Depth profiling of the d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993). [CrossRef]
  6. H. Åhlfeldt, “Nonlinear optical properties of proton-exchanged waveguides in z-cut LiTaO3,” J. Appl. Phys. 76, 3255–3260 (1994). [CrossRef]
  7. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, Cambridge, England, 1994).
  8. A. Boudrioua, S. Ould Salem, P. Moretti, R. Kremer, and J. C. Loulergue, “Electro-optic coefficients in H+-ion implanted LiNbO3 planar waveguide,” Nucl. Instrum. Methods Phys. Res. B 147, 393–398 (1998). [CrossRef]
  9. D. Fluck, T. Pliska, M. Küpfer, and P. Günter, “Depth profile of the nonlinear optical susceptibility of ion-implanted KNbO3 waveguides,” Appl. Phys. Lett. 67, 748–750 (1995). [CrossRef]
  10. J. Rames, J. Olivares, P. J. Chandler, and P. D. Townsend, “Second harmonic generation capabilities of ion-implanted LiNbO3 waveguides,” J. Appl. Phys. 84, 5180–5183 (1998). [CrossRef]
  11. D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton-exchanged slab optical waveguides in z-cut LiNbO3,” J. Appl. Phys. 54, 6218–6220 (1983). [CrossRef]
  12. P. Bindner, A. Boudrioua, P. Moretti, and J. C. Loulergue, “Refractive index behavior of He+-implanted waveguides in LiNbO3, LTB, and KTP materials,” Nucl. Instrum. Methods Phys. Res. B 142, 329–337 (1998). [CrossRef]
  13. D. Fluck, D. H. Jundt, P. Günter, M. Fleuster, and Ch. Buchal, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023–6030 (1993). [CrossRef]
  14. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of non-stationary mode index calculation,” Opt. Acta 33, 127–143 (1986). [CrossRef]
  15. R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12, 2901–2909 (1973). [CrossRef] [PubMed]
  16. K. S. Chiang, “Construction of refractive index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. LT-3, 385–391 (1985). [CrossRef]
  17. K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, and F. Laurell, “Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides,” J. Opt. Soc. Am. B 14, 3197–3202 (1997). [CrossRef]
  18. G. L. Destefanis, J. P. Gaillard, E. L. Ligeon, and S. Valette, “The formation of waveguides and modulators in LiNbO3 by ion implantation,” J. Appl. Phys. 50, 7898–7905 (1979). [CrossRef]
  19. P. Rejmankova, J. Baruchel, and P. Moretti, “Investigation of hydrogen implanted LiNbO3 crystals under DC electric field by synchrotron radiation topography,” Physica B 226, 293–303 (1996). [CrossRef]
  20. P. Moretti, P. Thevenard, K. Wirl, and P. Hertel, “Waveguides fabricated in LiNbO3 by proton implantation,” Mater. Res. Soc. Symp. Proc. 244, 323–328 (1992). [CrossRef]
  21. A. Boudrioua, P. Moretti, J. C. Loulergue, and G. Aka, “Formation of planar optical waveguides in new nonlinear gadolinium calcium oxoborate, Ca4GdO(BO3)3 (GdCOB), crystals by 2-MeV He+ implantation,” Opt. Lett. 23, 1680–1682 (1998). [CrossRef]
  22. L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. McCaffery, “Frequency doubling in ion-implanted KTiOPO4 planar waveguides with 25% conversion efficiency,” J. Appl. Phys. 73, 2695–2699 (1993). [CrossRef]
  23. A. Boudrioua, J. C. Loulergue, P. Moretti, B. Jacquier, G. Aka, and D. Vivien, “Second-harmonic generation in He+-implanted gadolinium calcium oxoborate, Ca4GdO(BO3)3 (GdCOB), planar waveguides,” Opt. Lett. 24, 1298–1301 (1999). [CrossRef]
  24. T. Pliska, D. Fluck, P. Günter, L. Beckers, and C. Buchal, “Mode propagation losses in He+ ion-implanted KNbO3 waveguides,” J. Opt. Soc. Am. B 15, 628–639 (1998). [CrossRef]
  25. S. A. M. Al Chalabi, B. L. Weiss, and K. P. Homewood, “Optical properties of rapid furnace annealed He+ implanted LiNbO3 waveguides,” Nucl. Instrum. Methods Phys. Res. B 28, 255–258 (1987). [CrossRef]
  26. S. Ould Salem, P. Moretti, B. Canut, K. Wirl, and P. Hertel, “Stabilité de guides optiques dans LiNbO3 réalisés par implantation de protons,” J. Opt. 24, 259–264 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited