OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 12 — Dec. 1, 2001
  • pp: 1922–1927

Laser spectroscopy of calcium in hollow-cathode discharges

R. L. Cavasso-Filho, A. Mirage, A. Scalabrin, D. Pereira, and F. C. Cruz  »View Author Affiliations


JOSA B, Vol. 18, Issue 12, pp. 1922-1927 (2001)
http://dx.doi.org/10.1364/JOSAB.18.001922


View Full Text Article

Enhanced HTML    Acrobat PDF (148 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigated the use of hollow-cathode discharges for high-resolution and high-sensitivity spectroscopy, using atomic calcium. Spectra with sub-Doppler resolution of Cai transitions at 423 (resonant), 610, 612, 616, 645, 657 (intercombination), and 672 nm were obtained by optogalvanic saturation spectroscopy in lamps filled with argon (0.6 and 2.5 Torr) and krypton (0.6 Torr). A Doppler background that is due to velocity-changing collisions, which may severely limit the resolution, can be greatly reduced by the choice of buffer gas. Sub-Doppler linewidths comparable with those achieved in atomic beams have been obtained, making a properly chosen hollow-cathode lamp a convenient tool for high-resolution spectroscopic experiments, providing wavelength references for laser frequency tuning. The sensitivity of optogalvanic detection and the excitation of most electronic levels by the discharge make these lamps attractive also for investigating weak and excited level transitions with the use of a simple experimental setup.

© 2001 Optical Society of America

OCIS Codes
(020.2070) Atomic and molecular physics : Effects of collisions
(140.7010) Lasers and laser optics : Laser trapping
(300.6440) Spectroscopy : Spectroscopy, optogalvanic
(300.6460) Spectroscopy : Spectroscopy, saturation

Citation
R. L. Cavasso-Filho, A. Mirage, A. Scalabrin, D. Pereira, and F. C. Cruz, "Laser spectroscopy of calcium in hollow-cathode discharges," J. Opt. Soc. Am. B 18, 1922-1927 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-12-1922


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Woehl, Jr., G. A. Garcia, F. C. Cruz, D. Pereira, and A. Scalabrin, “Deceleration of a calcium atomic beam with a frequency-doubled diode laser,” Appl. Opt. 38, 2540–2544 (1999). [CrossRef]
  2. C. W. Oates, M. Stephens, and L. Hollberg, “An all-diode-laser optical frequency reference using laser-trapped calcium,” presented at the 1997 International Frequency Control Symposium, Orlando, Fla., May 28–30, 1997.
  3. A. Witte, T. Kisters, F. Riehle, and J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992). [CrossRef]
  4. J. Helmcke, F. Riehle, J. Ishikawa, A. Witte, Th. Kisters, L.-L. Liu, and X. D. Yuan, in Light Induced Kinetic Effects on Atoms, Ions and Molecules, L. Moi, S. Gozzini, C. Gabbanini, E. Arimondo, and F. Strumia, eds. (ETS, Pisa, Italy, 1991).
  5. T. Kurosu and F. Shimizu, “Laser cooling and trapping of calcium and strontium,” Jpn. J. Appl. Phys., Part 2 29, L2127–L2129 (1990). [CrossRef]
  6. N. Beverini, F. Giammanco, E. Maccione, F. Strumia, and G. Vissani, “Measurement of the calcium 1P11D2 transition rate in a laser-cooled atomic beam,” J. Opt. Soc. Am. B 6, 2188–2193 (1989). [CrossRef]
  7. N. Beverini, E. Maccioni, D. Pereira, F. Strumia, and G. Vissani, “Laser cooling in calcium and magnesium atomic beams,” in Proceedings of the Fourth Symposium on Standards and Metrology, A. De Marchi, ed. (Springer-Verlag, Berlin, 1988), pp. 282–284.
  8. R. L. Barger, J. C. Bergquist, T. C. English, and D. J. Glaze, “Resolution of photon-recoil structure of the 6573 A calcium line in an atomic-beam with optical Ramsey fringes,” Appl. Phys. Lett. 34, 850–852 (1979). [CrossRef]
  9. F. Riehle, T. Kisters, A. Witte, J. Helmcke, and C. J. Bordè, “Optical Ramsey spectroscopy in a rotating frame—Sagnac effect in a matter wave interferometer,” Phys. Rev. Lett. 67, 177–180 (1991). [CrossRef] [PubMed]
  10. A. Morinaga, Y. Ohuchi, S. Yanagimachi, and T. Tako, “Interference fringes of the atom interferometer comprised of four copropagating traveling laser beams,” in Proceedings of the Fifth Symposium on Frequency Standards and Metrology (World Scientific, Singapore, 1995).
  11. H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, and G. Zinner, “First phase-coherent frequency measurement of visible radiation,” Phys. Rev. Lett. 76, 18–21 (1996). [CrossRef] [PubMed]
  12. P. Kersten, F. Mensing, U. Sterr, and F. Riehle, “A transportable optical calcium frequency standard,” Appl. Phys. B 68, 27–38 (1999). [CrossRef]
  13. C. W. Oates, F. Bondu, R. W. Fox, and L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999). [CrossRef]
  14. M. Machholm, P. S. Julienne, and K. Suominen, “Collisions of cold magnesium atoms in a weak laser field,” Phys. Rev. A 59, R4113–R4116 (1999). [CrossRef]
  15. H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999). [CrossRef]
  16. B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603–644 (1990). [CrossRef]
  17. A. Mirage, D. Pereira, F. C. Cruz, and A. Scalabrin, “Determination of the saturation parameter of electronic-transition in a uranium-neon hollow-cathode discharge by optogalvanic spectroscopy,” Nuovo Cimento D 14, 605–611 (1992). [CrossRef]
  18. R. L. Cavasso-Filho, A. Mirage, A. Scalabrin, D. Pereira, and F. C. Cruz, “Noise in hollow-cathode discharges,” Opt. Commun. (to be published).
  19. C. W. Oates, F. Bondu, and L. Hollberg, “Laser cooling and trapping of alkaline earth atoms: application to a Ca optical frequency reference,” in Proceedings of the 16th International Conference on Atomic Physics, W. E. Baylis and G. W. F. Drake, eds. (American Institute of Physics, New York, 1998), p. 115.
  20. W. Demtröder, Laser Spectroscopy, 3rd ed. (Springer-Verlag, Berlin, 1996).
  21. H. J. Onisto, R. L. Cavasso-Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, “Frequency-doubled, stabilized, all-solid-state Ti:sapphire laser,” submitted to Opt. Eng.
  22. A. Sasso, G. M. Tino, and M. Inguscio, “Investigation of collisional lineshapes of neon transitions in noble gases mixtures,” Nuovo Cimento D 10, 941 (1988). [CrossRef]
  23. It should be remembered that the same behavior of the OGS with current could also be a consequence of a decrease in the absorption coefficient as a result of electronic excitation of higher energy levels.
  24. P. W. Smith and T. Hänsch, “Cross-relaxation effects in the saturation of the 6328-A neon-laser line,” Phys. Rev. Lett. 26, 740–743 (1971). [CrossRef]
  25. J. Tenenbaum, E. Miron, S. Lavi, J. Liran, M. Strauss, J. Oreg, and G. Erez, “Velocity changing collisions in saturation absorption of U,” J. Phys. B 16, 4543–4553 (1983). [CrossRef]
  26. C. Brechignac, R. Vetter, and P. R. Berman, “Influence of collisions on saturated-absorption profiles of the 557 nm line of KrI,” J. Phys. B 10, 3443–3450 (1977). [CrossRef]
  27. F. C. Cruz, A. Mirage, A. Scalabrin, and D. Pereira, “Optogalvanic sub-Doppler spectroscopy in titanium,” J. Phys. B 27, 5851–5861 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited