OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 2 — Feb. 1, 2001
  • pp: 139–152

Quantum noise in optical fibers. I. Stochastic equations

P. D. Drummond and J. F. Corney  »View Author Affiliations

JOSA B, Vol. 18, Issue 2, pp. 139-152 (2001)

View Full Text Article

Acrobat PDF (251 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the quantum dynamics of radiation propagating in a single-mode optical fiber with dispersion, nonlinearity, and Raman coupling to thermal phonons. We start from a fundamental Hamiltonian that includes the principal known nonlinear effects and quantum-noise sources, including linear gain and loss. Both Markovian and frequency-dependent, non-Markovian reservoirs are treated. This treatment allows quantum Langevin equations, which have a classical form except for additional quantum-noise terms, to be calculated. In practical calculations, it is more useful to transform to Wigner or +P quasi-probability operator representations. These transformations result in stochastic equations that can be analyzed by use of perturbation theory or exact numerical techniques. The results have applications to fiber-optics communications, networking, and sensor technology.

© 2001 Optical Society of America

OCIS Codes
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4510) Fiber optics and optical communications : Optical communications
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect
(270.3430) Quantum optics : Laser theory
(270.5530) Quantum optics : Pulse propagation and temporal solitons

P. D. Drummond and J. F. Corney, "Quantum noise in optical fibers. I. Stochastic equations," J. Opt. Soc. Am. B 18, 139-152 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. J. Carter, P. D. Drummond, M. D. Reid, and R. M. Shelby, “Squeezing of quantum solitons,” Phys. Rev. Lett. 58, 1841–1844 (1987).
  2. P. D. Drummond and S. J. Carter, “Quantum-field theory of squeezing in solitons,” J. Opt. Soc. Am. B 4, 1565–1573 (1987).
  3. M. Rosenbluh and R. M. Shelby, “Squeezed optical solitons,” Phys. Rev. Lett. 66, 153–156 (1991); P. D. Drummond, R. M. Shelby, S. R. Friberg, and Y. Yamamoto, “Quantum solitons in optical fibres,” Nature 365, 307–313 (1993).
  4. J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986).
  5. H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68, 423–444 (1996).
  6. J. F. Corney and P. D. Drummond, “Quantum noise in optical fibers. II. Raman jitter in soliton communications,” J. Opt. Soc. Am. B 18, 153–161 (2001).
  7. P. D. Drummond, “Electromagnetic quantization in dispersive inhomogeneous nonlinear dielectrics,” Phys. Rev. A 42, 6845–6857 (1990).
  8. P. D. Drummond and S. J. Carter, “Quantum-field theory of squeezing in solitons,” J. Opt. Soc. Am. B 4, 1565–1573 (1987); P. D. Drummond, S. J. Carter, and R. M. Shelby, “Time dependence of quantum fluctuations in solitons,” Opt. Lett. 14, 373–375 (1989).
  9. B. Yurke and M. J. Potasek, “Solution to the initial value problem for the quantum nonlinear Schrödinger equation,” J. Opt. Soc. Am. B 6, 1227–1238 (1989).
  10. P. D. Drummond and M. Hillery, “Quantum theory of dispersive electromagnetic modes,” Phys. Rev. A 59, 691–707 (1999).
  11. E. Power and S. Zienau, “Coulomb gauge in nonrelativistic quantum electrodynamics and the shape of spectral lines,” Philos. Trans. R. Soc. London, Ser. A 251, 427–454 (1959); R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1983).
  12. M. Hillery and L. D. Mlodinow, “Quantization of electrodynamics in nonlinear dielectric media,” Phys. Rev. A 30, 1860–1865 (1984).
  13. N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965).
  14. P. D. Drummond, “Quantum theory of fiber-optics and solitons,” in Coherence and Quantum Optics VII, J. Eberly, L. Mandel, and E. Wolf, eds. (Plenum, New York, 1996), pp. 323–332.
  15. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995), pp. 28–59.
  16. S. J. Carter and P. D. Drummond, “Squeezed quantum solitons and Raman noise,” Phys. Rev. Lett. 67, 3757–3760 (1991).
  17. F. X. Kartner, D. J. Dougherty, H. A. Haus, and E. P. Ippen, “Raman noise and soliton squeezing,” J. Opt. Soc. Am. B 11, 1267–1276 (1994).
  18. Y. Lai and S.-S. Yu, “General quantum theory of nonlinear optical-pulse propagation,” Phys. Rev. A 51, 817–829 (1995); S.-S. Yu and Y. Lai, “Impacts of self-Raman effect and third-order dispersion on pulse squeezed state generation using optical fibers,” J. Opt. Soc. Am. B 12, 2340–2346 (1995).
  19. T. von Foerster and R. J. Glauber, “Quantum theory of light propagation in amplifying media,” Phys. Rev. A 3, 1484–1511 (1971); I. A. Walmsley and M. G. Raymer, “Observation of macroscopic quantum fluctuations in stimulated Raman scattering,” Phys. Rev. Lett. 50, 962–965 (1983).
  20. M. D. Levenson, Introduction to Nonlinear Laser Spectroscopy (Academic, New York, 1982).
  21. P. Dean, “The vibrational properties of disordered systems: numerical studies,” Rev. Mod. Phys. 44, 127–168 (1972).
  22. R. H. Stolen, C. Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984); D. J. Dougherty, F. X. Kartner, H. A. Haus, and E. P. Ippen, “Measurement of the Raman gain spectrum of optical fibers,” Opt. Lett. 20, 31–33 (1995); R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B JOBPDE 6, 1159–1166 (1989).
  23. R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guidedacoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244–5252 (1985).
  24. R. M. Shelby, P. D. Drummond, and S. J. Carter, “Phase-noise scaling in quantum soliton propagation,” Phys. Rev. A 42, 2966–2796 (1990).
  25. K. Bergman, H. A. Haus, and M. Shirasaki, “Analysis and measurement of GAWBS spectrum in a nonlinear fiber ring,” Appl. Phys. B 55, 242–249 (1992).
  26. K. Smith and L. F. Mollenauer, “Experimental observation of soliton interaction over long fiber paths: discovery of a long-range interaction,” Opt. Lett. 14, 1284–1286 (1989); E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. M. Prokhorov, “Long-range interaction of picosecond solitons through excitation of acoustic waves in optical fibers,” Appl. Phys. B 54, 175–180 (1992).
  27. S. H. Perlmutter, M. D. Levenson, R. M. Shelby, and M. B. Weissman, “Inverse-power-law light scattering in fused-silica optical fiber,” Phys. Rev. Lett. 61, 1388–1391 (1988); “Polarization of quasielastic light scattering in fused-silica optical fiber,” Phys. Rev. B 42, 5294–5305 (1990).
  28. R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54 μm,” Electron. Lett. 23, 1026–1028 (1987).
  29. E. Desurvire, Erbium-Doped Fiber Amplifiers, Principles and Applications (Wiley, New York, 1993).
  30. P. D. Drummond and M. G. Raymer, “Quantum theory of propagation of nonclassical radiation in a near-resonant medium,” Phys. Rev. A 44, 2072–2085 (1991).
  31. L. F. Mollenauer, “Solitons in optical fibers and the soliton laser,” Philos. Trans. R. Soc. London 15, 437–450 (1985); L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
  32. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986); F. M. Mitschjke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
  33. P. D. Drummond and A. D. Hardman, “Simulation of quantum effects in Raman-active waveguides,” Europhys. Lett. 21, 279–284 (1993); P. D. Drummond and W. Man, “Quantum noise in reversible soliton logic,” Opt. Commun. 105, 99–103 (1994).
  34. S. J. Carter, “Quantum theory of nonlinear fiber optics: phase-space representations,” Phys. Rev. A 51, 3274–3301 (1995).
  35. M. J. Werner and P. D. Drummond, “Robust algorithms for solving stochastic partial differential equations,” J. Comput. Phys. 132, 312–326 (1997).
  36. N. J. Smith, N. J. Doran, W. Forysiak, and F. M. Knox, “Soliton transmission using periodic dispersion compensation,” J. Lightwave Technol. 15, 1808–1822 (1997).
  37. T. I. Lakoba and D. J. Kaup, “Influence of the Raman effect on dispersion-managed solitons and their interchannel collisions,” Opt. Lett. 24, 808–810 (1999).
  38. S. Namiki, C. X. Yu, and H. A. Haus, “Observation of nearly quantum-limited timing jitter in an all-fiber ring laser,” J. Opt. Soc. Am. B 13, 2817–2823 (1996); B. C. Collings, K. Bergman, and W. H. Knox, “Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser,” Opt. Lett. 23, 123–125 (1998).
  39. S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, and T. Mukai, “Observation of optical soliton photon-number squeezing,” Phys. Rev. Lett. 77, 3775–3778 (1996); S. Spalter, M. Burk, U. Strossner, M. Bohm, A. Sizmann, and G. Leuchs, “Photon number squeezing of spectrally filtered sub-picosecond optical solitons,” Europhys. Lett. 38, 335–340 (1997); D. Krylov and K. Bergman, “Amplitude-squeezed solitons from an asymmetric fiber interferometer,” Opt. Lett. OPLEDP 23, 1390–1392 (1998).
  40. M. J. Werner, “Raman-induced photon correlations in optical fiber solitons,” Phys. Rev. A 60, R781–R784 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited