Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quantum noise in optical fibers. II. Raman jitter in soliton communications

Not Accessible

Your library or personal account may give you access

Abstract

The dynamics of a soliton propagating in a single-mode optical fiber with gain, loss, and Raman coupling to thermal phonons is analyzed. Using both soliton perturbation theory and exact numerical techniques, we propose that intrinsic thermal quantum noise from the phonon reservoirs is a larger source of jitter and other perturbations than the gain-related Gordon–Haus noise for short pulses (≲1 ps), assuming typical fiber parameters. The size of the Raman timing jitter is evaluated for both bright and dark (topological) solitons and is larger for bright solitons. Because Raman thermal quantum noise is a nonlinear, multiplicative noise source, these effects are stronger for the more intense pulses that are needed to propagate as solitons in the short-pulse regime. Thus Raman noise may place additional limitations on fiber-optical communications and networking by use of ultrafast (subpicosecond) pulses.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Quantum noise in optical fibers. I. Stochastic equations

P. D. Drummond and J. F. Corney
J. Opt. Soc. Am. B 18(2) 139-152 (2001)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (69)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved