OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 2 — Feb. 1, 2001
  • pp: 153–161

Quantum noise in optical fibers. II. Raman jitter in soliton communications

J. F. Corney and P. D. Drummond  »View Author Affiliations

JOSA B, Vol. 18, Issue 2, pp. 153-161 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (192 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dynamics of a soliton propagating in a single-mode optical fiber with gain, loss, and Raman coupling to thermal phonons is analyzed. Using both soliton perturbation theory and exact numerical techniques, we propose that intrinsic thermal quantum noise from the phonon reservoirs is a larger source of jitter and other perturbations than the gain-related Gordon–Haus noise for short pulses (≲1 ps), assuming typical fiber parameters. The size of the Raman timing jitter is evaluated for both bright and dark (topological) solitons and is larger for bright solitons. Because Raman thermal quantum noise is a nonlinear, multiplicative noise source, these effects are stronger for the more intense pulses that are needed to propagate as solitons in the short-pulse regime. Thus Raman noise may place additional limitations on fiber-optical communications and networking by use of ultrafast (subpicosecond) pulses.

© 2001 Optical Society of America

OCIS Codes
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4510) Fiber optics and optical communications : Optical communications
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect
(270.3430) Quantum optics : Laser theory
(270.5530) Quantum optics : Pulse propagation and temporal solitons

J. F. Corney and P. D. Drummond, "Quantum noise in optical fibers. II. Raman jitter in soliton communications," J. Opt. Soc. Am. B 18, 153-161 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Corney, P. D. Drummond, and A. Liebman, “Quantum noise limits to terabaud communications,” Opt. Commun. 140, 211–215 (1997). [CrossRef]
  2. J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986). [CrossRef] [PubMed]
  3. P. D. Drummond and J. F. Corney, “Quantum noise in optical fibers. I. Stochastic equations,” J. Opt. Soc. Am. B 18, 139–152 (2001). [CrossRef]
  4. L. F. Mollenauer, J. P. Gordon, and M. N. Islam, “Soliton propagation in long fibers with periodically compensated loss,” IEEE J. Quantum Electron. 22, 157–173 (1986). [CrossRef]
  5. J. D. Moores, W. S. Wong, and H. A. Haus, “Stability and timing maintenance in soliton transmission and storage rings,” Opt. Commun. 113, 153–175 (1994). [CrossRef]
  6. A. K. Atieh, P. Myslinski, J. Chrostowski, and P. Galko, “Measuring the Raman time constant (TR) for soliton pulses in standard single-mode fiber,” J. Lightwave Technol. 17, 216–221 (1999). [CrossRef]
  7. D.-M. Baboiu, D. Mihalache, and N.-C. Panoiu, “Combined influence of amplifier noise and intrapulse Raman scattering on the bit-rate limit of optical fiber communication systems,” Opt. Lett. 20, 1865–1867 (1995); D. Mihalache, L.-C. Crasovan, N.-C. Panoiu, F. Moldoveanu, and D.-M. Baboiu, “Timing jitter of femtosecond solitons in monomode optical fibers,” Opt. Eng. 35, 1611–1615 (1996); D. Wood, “Constraints on the bit rates in direct detection optical communication systems using linear or soliton pulses,” J. Lightwave Technol. JLTEDG 8, 1097–1106 (1990). [CrossRef] [PubMed]
  8. D. Shenoy and A. Puri, “Compensation for the soliton self-frequency shift and the third-order dispersion using bandwidth-limited optical gain,” Opt. Commun. 113, 410–406 (1995); S. V. Chernikov and S. M. J. Kelly, “Stability of femtosecond solitons in optical fibres influenced by optical attenuation and bandwidth limited gain,” Electron. Lett. 28, 238–240 (1992). [CrossRef]
  9. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif. 1995), p. 475.
  10. P. D. Drummond and W. Man, “Quantum noise in reversible soliton logic,” Opt. Commun. 105, 99–103 (1994). [CrossRef]
  11. H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68, 423–444 (1996). [CrossRef]
  12. F. X. Kartner, D. J. Dougherty, H. A. Haus, and E. P. Ippen, “Raman noise and soliton squeezing,” J. Opt. Soc. Am. B 11, 1267–1276 (1994). [CrossRef]
  13. D. J. Kaup, “Perturbation theory for solitons in optical fibers,” Phys. Rev. A 42, 5689–5694 (1990). [CrossRef] [PubMed]
  14. Y. S. Kivshar, M. Haelterman, P. Emplit, and J. P. Hamaide, “Gordon–Haus effect on dark solitons,” Opt. Lett. 19, 19–21 (1994); Y. S. Kivshar, “Dark solitons in nonlinear optics,” IEEE J. Quantum Electron. 29, 250–264 (1993). [CrossRef] [PubMed]
  15. I. M. Uzunov and V. S. Gerdjikov, “Self-frequency shift of dark solitons in optical fibers,” Phys. Rev. A 47, 1582–1585 (1993). [CrossRef] [PubMed]
  16. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion,” Appl. Phys. 23, 171–172 (1973).
  17. J. Hamaide, P. Emplit, and M. Haelterman, “Dark-soliton jitter in amplified optical transmission systems,” Opt. Lett. 16, 1578–1580 (1991). [CrossRef] [PubMed]
  18. R. H. Stolen, C. Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984); D. J. Dougherty, F. X. Kartner, H. A. Haus, and E. P. Ippen, “Measurement of the Raman gain spectrum of optical fibers,” Opt. Lett. 20, 31–33 (1995); R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B JOBPDE 6, 1159–1166 (1989). [CrossRef] [PubMed]
  19. Y. Lai and S.-S. Yu, “General quantum theory of nonlinear optical-pulse propagation,” Phys. Rev. A 51, 817–829 (1995); S.-S. Yu and Y. Lai, “Impacts of self-Raman effect and third-order dispersion on pulse squeezed state generation using optical fibers,” J. Opt. Soc. Am. B 12, 2340–2346 (1995). [CrossRef] [PubMed]
  20. A. Mecozzi, M. Midrio, and M. Romagnoli, “Timing jitter in soliton transmission with sliding filters,” Opt. Lett. 21, 402–404 (1996); L. F. Mollenauer, P. V. Mamyshev, and M. J. Neubelt, “Measurement of timing jitter in filter-guided soliton transmission at 10 Gbits/s and achievement of 375 Gbits/s-Mm, error free, at 12.5 and 15 Gbits/s,” Opt. Lett. 19, 704–706 (1994); L. F. Mollenauer, M. J. Neubelt, S. G. Evangelides, J. P. Gordon, J. R. Simpson, and L. G. Cohen, “Experimental study of soliton transmission over more than 10000 km in dispersion-shifted fiber,” Opt. Lett. OPLEDP 15, 1203–1205 (1990). [CrossRef] [PubMed]
  21. P. D. Drummond, “Central partial difference propagation algorithms,” Comput. Phys. Commun. 29, 211–225 (1983). [CrossRef]
  22. P. D. Drummond and A. D. Hardman, “Simulation of quantum effects in Raman-active waveguides,” Europhys. Lett. 21, 279–284 (1993). [CrossRef]
  23. P. D. Drummond and I. K. Mortimer, “Computer simulations of multiplicative stochastic differential equations,” J. Comput. Phys. 93, 144–170 (1991). [CrossRef]
  24. M. J. Werner and P. D. Drummond, “Robust algorithms for solving stochastic partial differential equations,” J. Comput. Phys. 132, 312–326 (1997). [CrossRef]
  25. C. X. Yu, S. Namiki, and H. A. Haus, “Noise of the stretched pulse fiber laser. II. Experiments,” IEEE J. Quantum Electron. 33, 660–668 (1997). [CrossRef]
  26. S. Namiki, C. X. Yu, and H. A. Haus, “Observation of nearly quantum-limited timing jitter in an all-fiber ring laser,” J. Opt. Soc. Am. B 13, 2817–2823 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited