OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 2 — Feb. 1, 2001
  • pp: 187–194

Measurement of the dc Kerr and electrostrictive phase modulation in silica

Alice C. Liu, Michel J. F. Digonnet, and Gordon S. Kino  »View Author Affiliations

JOSA B, Vol. 18, Issue 2, pp. 187-194 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (276 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report, to our knowledge, the first polarization-resolved measurement of the frequency dependence of both the electronic and the electrostrictive contributions to the dc Kerr coefficient in silica. At the acoustic resonance the perpendicular polarization phase shift is a factor of 2.3 times greater than in the parallel polarization, confirming the presence of strong electrostriction. We find good agreement between the phase-shift measurements and theoretical models of both the polarization and frequency dependence. The analysis indicates the dc Kerr coefficient χ1111(3)(-ω;ω, 0, 0) to be 1.9×10-22 m2/V2. From these results the electrostrictive contribution to a poled-silica device near the device acoustic resonance is expected to be r33,Es=28 pm/V, over an order of magnitude greater than the electronic Kerr electro-optic coefficient r33,Kerr=0.2 pm/V.

© 2001 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.6030) Materials : Silica
(190.0190) Nonlinear optics : Nonlinear optics
(190.3270) Nonlinear optics : Kerr effect
(230.2090) Optical devices : Electro-optical devices

Alice C. Liu, Michel J. F. Digonnet, and Gordon S. Kino, "Measurement of the dc Kerr and electrostrictive phase modulation in silica," J. Opt. Soc. Am. B 18, 187-194 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Myers, N. Mukherhee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1734 (1991). [CrossRef] [PubMed]
  2. N. Mukherjee, R. A. Myers, and S. R. J. Brueck, “Dynamics of second-harmonic generation in fused silica,” J. Opt. Soc. Am. B 11, 665–669 (1994). [CrossRef]
  3. A. Le Calvez, E. Freysz, and A. Ducasse, “A model for second harmonic generation in poled glasses,” Eur. Physical J. D 1, 223–226 (1998). [CrossRef]
  4. A. C. Liu, M. J. F. Digonnet, G. S. Kino, and E. J. Knystautas, “Improved nonlinear coefficient (0.7 pm/V) in silica thermally poled at high voltage and temperature,” Electron. Lett. 36, 555–556 (2000). [CrossRef]
  5. M. C. Farries and A. J. Rogers, “Temperature dependence of the Kerr effect in a silica optical fibre,” Electron. Lett. 19, 890–891 (1983). [CrossRef]
  6. X. C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of the linear electro-optic coefficient in poled amorphous silica,” Opt. Lett. 19, 1819–1821 (1994). [CrossRef] [PubMed]
  7. E. L. Buckland and R. W. Boyd, “Measurement of the frequency response of the electrostrictive nonlinearity in optical fibers,” Opt. Lett. 22, 676–678 (1997). [CrossRef] [PubMed]
  8. A. Fellegara, A. Melloni, and M. Martinelli, “Measurement of the frequency response induced by electrostriction in optical fibers,” Opt. Lett. 22, 1615–1617 (1997). [CrossRef]
  9. P. J. Hardman, P. D. Townsend, A. J. Poustie, and K. J. Blow, “Experimental investigation of resonant enhancement of the acoustic interaction of optical pulses in an optical fiber,” Opt. Lett. 21, 393–395 (1996). [CrossRef] [PubMed]
  10. A. Melloni, M. Frasca, A. Garavaglia, A. Tonini, and M. Martinelli, “Direct measurement of electrostriction in optical fibers,” Opt. Lett. 23, 691–693 (1998). [CrossRef]
  11. A. Melloni, M. Martinelli, and A. Fellegara, “Frequency characterization of the nonlinear refractive index in optical fiber,” Fiber Integr. Opt. 18, 1–13 (1999). [CrossRef]
  12. T. Kato, Y. Suetsugu, M. Takagi, E. Sasaoka, and M. Nishimura, “Measurement of the nonlinear refractive index in optical fiber by the cross-phase-modulation method with depolarized pump light,” Opt. Lett. 20, 988–990 (1995). [CrossRef] [PubMed]
  13. K. S. Kim, R. H. Stolen, W. A. Reed, and K. W. Quoi, “Measurement of the nonlinear index of silica-core and dispersion-shifted fibers,” Opt. Lett. 19, 257–259 (1994). [CrossRef] [PubMed]
  14. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics, Vol. 9 of Cambridge Studies in Modern Optics (Cambridge University, Cambridge, UK, 1990).
  15. J. F. Nye, Physical Properties of Crystals; 2nd ed. (Clarendon, Oxford, 1985).
  16. G. S. Kino, Acoustic Waves: Devices, Imaging, and Analog Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1987).
  17. R. W. Dixon, “Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners,” J. Appl. Phys. 38, 5149–5153 (1967). [CrossRef]
  18. M. Paillette, “Kerr effect and electrostriction in lead silicate glasses,” J. Phys. (France) 37, 855–864 (1976). [CrossRef]
  19. A. R. Selfridge, “Approximate material properties in isotropic materials,” IEEE Trans. Sonics Ultrason. SU-32, 381–394 (1985). [CrossRef]
  20. Y. Sun, W. W. Cao, and L. E. Cross, “Electrostriction effect in glass,” Mater. Lett. 4, 329–336 (1986). [CrossRef]
  21. R. E. Newnham, V. Sundar, R. Yimnirun, J. Su, and Q. M. Zhang, “Electrostriction: nonlinear electromechanical coupling in solid dielectrics,” J. Phys. Chem. B 101, 10141–10150 (1997). [CrossRef]
  22. V. Sundar, R. Yimnirun, B. G. Aitken, and R. E. Newnham, “Structure-property relationships in the electrostriction response of low dielectric permittivity silicate glasses,” Mater. Res. Bull. 33, 1307–1314 (1998). [CrossRef]
  23. M. Khoshnevisan and P. Yeh, “Relationship between nonlinear electrostrictive Kerr effects and acousto-optics,” Proc. SPIE 739, 82–86 (1987). [CrossRef]
  24. A. C. Liu, “Poled silica: material and device characterization,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1999).
  25. A. Yariv and P. Yeh, Optical Waves in Crystal, Wiley Series in Pure and Applied Optics (Wiley, New York, 1984).
  26. F. Haberl, H. Hochreiter, J. Zehetner, A. J. Schmidt, M. E. Fermann, and L. Luksun, “Electrical breakdown in Ge-doped silica glass fibres,” Int. J. Optoelectron. 5, 363–366 (1990).
  27. X. C. Long, R. A. Myers, and S. R. J. Brueck, “Measurement of linear electro-optic effect in temperature/electric-field poled optical fibres,” Electron. Lett. 30, 2162–2163 (1994). [CrossRef]
  28. P. G. Kazansky, L. Dong, and P. S. J. Russell, “High second-order nonlinearities in poled silicate fibers,” Opt. Lett. 19, 701–703 (1994). [CrossRef] [PubMed]
  29. P. G. Kazansky, P. S. J. Russell, L. Dong, and C. N. Pannell, “Pockels effect in thermally poled silica optical fibres,” Electron. Lett. 31, 62–63 (1995). [CrossRef]
  30. T. Fujiwara, D. Wong, and S. Fleming, “Large electrooptic modulation in a thermally-poled germanosilicate fiber,” IEEE Photon. Technol. Lett. 7, 1177–1179 (1995). [CrossRef]
  31. P. G. Kazansky and P. S. J. Russell, “Thermally poled glass: frozen-in electric field or oriented dipoles?,” Opt. Commun. 110, 611–614 (1994). [CrossRef]
  32. I. Abdulhalim and C. N. Pannell, “Photoelastic in-fiber birefringence modulator operating at the fundamental transverse acoustic resonance,” IEEE Photon. Technol. Lett. 5, 1197–1199 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited