OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 2 — Feb. 1, 2001
  • pp: 195–205

Adaptive beam combining and interferometry with photorefractive quantum wells

D. D. Nolte, T. Cubel, L. J. Pyrak-Nolte, and M. R. Melloch  »View Author Affiliations


JOSA B, Vol. 18, Issue 2, pp. 195-205 (2001)
http://dx.doi.org/10.1364/JOSAB.18.000195


View Full Text Article

Enhanced HTML    Acrobat PDF (257 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a comprehensive study of excitonic electroabsorption and two-wave mixing in photorefractive quantum wells. By combining these two measurements, we are able to determine the internal grating writing efficiency for converting an external spatial light modulation into an internal space-charge field. The internal writing efficiency at a fringe spacing Λ=40 µm is found to be a decreasing function of applied field, varying from ξ=0.4 at low fields to 0.2 at 12 kV/cm. The two-wave mixing efficiency in the quantum wells exceeds 40% and is used for adaptive beam combining and laser-based ultrasound detection. The quantum wells balance the hot-electron-induced photorefractive phase shift with excitonic spectral phase to guarantee quadrature in homodyne detection of ultrasound-induced surface displacements. The ability to tune through multiple quadratures is demonstrated here for the first time to our knowledge. We derive a noise-equivalent surface displacement of 1.7×10-6 Å (W/Hz)1/2 at a field of 12 kV/cm and a fringe spacing of Λ=40 µm. This value is within a factor of 7 of the shot-noise limit of an ideal interferometer.

© 2001 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(090.2880) Holography : Holographic interferometry
(190.5330) Nonlinear optics : Photorefractive optics
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(280.3420) Remote sensing and sensors : Laser sensors

Citation
D. D. Nolte, T. Cubel, L. J. Pyrak-Nolte, and M. R. Melloch, "Adaptive beam combining and interferometry with photorefractive quantum wells," J. Opt. Soc. Am. B 18, 195-205 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-2-195


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Rossomakhin and S. I. Stepanov, “Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals,” Opt. Commun. 86, 199–204 (1991). [CrossRef]
  2. R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991). [CrossRef]
  3. A. Blouin and J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett. 65, 932–934 (1994). [CrossRef]
  4. B. F. Pouet, R. K. Ing, S. Krishnaswamy, and D. Royer, “Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782 (1996). [CrossRef]
  5. L.-A. Montmorillon, I. Biaggio, P. Delaye, J.-C. Launay, and G. Roosen, “Eye safe large field of view homodyne detection using a photorefractive CdTe:V crystal,” Opt. Commun. 129, 293 (1996). [CrossRef]
  6. P. Delaye, A. Blouin, D. Drolet, L. Montmorillon, G. Roosen, and J. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997). [CrossRef]
  7. D. D. Nolte, “Semi-insulating semiconductor heterostructures: optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999). [CrossRef]
  8. S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999). [CrossRef]
  9. I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998). [CrossRef]
  10. R. M. Brubaker, Q. N. Wang, D. D. Nolte, and M. R. Melloch, “Nonlocal photorefractive response induced by intervalley electron scattering in semiconductors,” Phys. Rev. Lett. 77, 4249–4252 (1996). [CrossRef] [PubMed]
  11. D. D. Nolte and M. R. Melloch, “Photorefractive quantum wells and thin films,” in Photorefractive Effects and Materials D. D. Nolte, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 372–451.
  12. Q. N. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, “Photorefractive quantum wells: transverse Franz–Keldysh geometry,” J. Opt. Soc. Am. B 9, 1626–1641 (1992). [CrossRef]
  13. I. Lahiri, “Photorefractive quantum wells: materials, devices and systems,” Ph.D. dissertation (Purdue University, West Lafayette, Ind., 1998).
  14. D. D. Nolte, Book Photorefractive Effects and Materials (Kluwer Academic, Dordrecht, The Netherlands, 1995).
  15. Q. N. Wang, D. D. Nolte, and M. R. Melloch, “Two-wave mixing in photorefractive AlGaAs/GaAs quantum wells,” Appl. Phys. Lett. 59, 256–258 (1991). [CrossRef]
  16. Q. N. Wang, R. M. Brubaker, and D. D. Nolte, “Photorefractive phase shift induced by hot electron transport: multiple quantum well structures,” J. Opt. Soc. Am. B 11, 1773–1779 (1994). [CrossRef]
  17. C. V. Raman and N. S. N. Nath, “The diffraction of light by high frequency sound waves,” Proc. Indian Acad. Sci. 2, 406 (1935).
  18. Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22, 718–721 (1997). [CrossRef] [PubMed]
  19. Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998). [CrossRef]
  20. M. Dinu, K. Nakagawa, M. R. Melloch, A. M. Weiner, and D. D. Nolte, “Broadband low-dispersion diffraction of femtosecond pulses from photorefractive quantum wells,” J. Opt. Soc. Am. B 17, 1313–1319 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited