OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 2 — Feb. 1, 2001
  • pp: 232–239

Mechanism of high-density power-gated hole burning in Eu2+-doped sulfides

Zameer Hasan and Levent Biyikli  »View Author Affiliations


JOSA B, Vol. 18, Issue 2, pp. 232-239 (2001)
http://dx.doi.org/10.1364/JOSAB.18.000232


View Full Text Article

Acrobat PDF (169 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The mechanism for highly efficient photoionization spectral hole burning in the 4f7–4f65d1 transition of Eu2+ in MgS host is investigated in detail. The time and power dependencies of the hole depth and its photoerasure are analyzed assuming that a resonant two-photon ionization process initiates the hole burning. The near-room-temperature cycling shifts the hole to low energies, demonstrating the relaxation of an unstable lattice resulting from the hole burning. The characteristics of hole burning change significantly in samples codoped with Ce and Eu. All of these studies support that the mechanism of hole burning is the electron transfer from the Eu2+ ion to the Eu3+ deep trap, both of which are located at the substitutional octahedral sites.

© 2001 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(210.4810) Optical data storage : Optical storage-recording materials
(300.6250) Spectroscopy : Spectroscopy, condensed matter
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6410) Spectroscopy : Spectroscopy, multiphoton

Citation
Zameer Hasan and Levent Biyikli, "Mechanism of high-density power-gated hole burning in Eu2+-doped sulfides," J. Opt. Soc. Am. B 18, 232-239 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-2-232


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Szabo, “Frequency selective optical memory,” U.S. patent 3, 896, 420 (July 22, 1975); G. Castro, D. Haarer, R. M. Macfarlane, and H. P. Trommsdroff, “Frequency selective optical data storage system,” U.S. Patent 4, 101, 976 (July 18, 1978).
  2. Z. Hasan, M. Solonenko, P. I. Macfarlane, L. Biyikli, V. K. Mathur, and F. A. Karwacki, “Persistent high density spectral holeburning in CaS:Eu and CaS:Eu, Sm phosphors,” Appl. Phys. Lett. 72, 2373–2375 (1998).
  3. Z. Hasan, L. Biyikli, and P. I. Macfarlane, “Power-gated spectral holeburning in MgS:Eu2+, Eu3+: a case for high-density persistent spectral holeburning,” Appl. Phys. Lett. 72, 3399–3401 (1998).
  4. Z. Hasan, “Material challenges for spectral hole burning,” Proc. SPIE 3468, 154–164 (1998).
  5. Z. Hasan and L. Biyikli, “Photon-gated hole burning materials: directions in high density memory storage,” Mater. Sci. Forum 51, 315–317 (1999).
  6. L. Biyikli, M. Solonenko, S. M. Ahmedyan, and Z. Hasan, “High density photon-gated hole burning in sulfides,” Proc. SPIE 3468, 285–292 (1998).
  7. M. Solonenko and Z. Hasan, Temple University, Philadelphia, Pa. (personal communication, 1999).
  8. Y. Nakao, “Luminescent centers of MgS, CaS and CaSe phosphors activated with Eu3+ ion,” J. Phys. Soc. Jpn. 48, 534–541 (1980).
  9. S. Volker, R. M. MacFarlane, A. Z. Genack, H. P. Tormmsdorff, and J. H. VanderWaals, “Homogeneous linewidth of the S1 from S0 transition of free-base porphyrin in ann-octane crystal as studied by photochemical hole-burning,” J. Chem. Phys. 67, 1759–1765 (1977).
  10. D. M. Burland and D. Haarer, “One- and two-photon laser photochemistry in organic solids,” IBM J. Res. Dev. 23, 534–546 (1979).
  11. R. Jankowiak, R. Richert, and H. Bassler, “Nonexponential hole burning in organic glasses,” J. Phys. Chem. 89, 4569–4574 (1985).
  12. K. Kanematsu, R. Shiraishi, A. Imaoka, S. Saikan, and T. Kushida, “Time dependence of hole spectrum due to dispersive burning kinetics in dye-doped polymers,” J. Chem. Phys. 91, 6579–6587 (1989).
  13. M. J. Kenney, R. Jankowiak, and G. J. Small, “Dispersive kinetics of nonphotochemical hole growth for oxazine 720 in glycerol, polyvinyl alcohol and their deuterated analogues,” Chem. Phys. 146, 47–61 (1990).
  14. L. A. Rebane, A. A. Gorokhovskii, and J. V. Kikas, “Low-temperature spectroscopy of organic molecules in solids by photochemical hole burning,” Appl. Phys. B 29, 235–250 (1982).
  15. L. Biyikli and Z. Hasan, “The dynamics of hole burning in 4fn-4fn−15d1 transition of Eu2+ in MgS,” J. Lumin. 83, 373–377 (1999).
  16. M. Solonenko, “Persistent spectral hole burning in europium and europium–samasium doped CaS,” Ph.D. dissertation (Temple University, Philadelphia, Pa., 1999).
  17. S. Asano, N. Yamashita, and T. Ohnishi, “Luminescence of the Ce3+ ion in the phosphor MgS,” Phys. Status Solidi 99, 661–672 (1980).
  18. D. S. McClure and Z. Kiss, “Survey of the spectra of the divalent rare-earth ions in cubic crystals,” J. Chem. Phys. 39, 3251–3257 (1963).
  19. C. Pedrini, F. Rogemond, and D. S. McClure, “Photoionization thresholds of rare-earth impurity ions. Eu2+:CaF2, Ce3+:YAG, and Sm2+:CaF2,” J. Appl. Phys. 59, 1196–1201 (1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited