Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dynamic holography in a broad-area optically pumped vertical GaAs microcavity

Not Accessible

Your library or personal account may give you access

Abstract

A broad-surface-area vertical GaAs microcavity was operated as an adaptive holographic film. The cavity mirrors were transparent to high-energy (millijoules per square centimeter) hologram writing pulses at a wavelength of 730 nm that generated optically pumped gain gratings in a 1-µm-thick active layer of GaAs. The gain gratings were probed with a low-intensity (mW) tunable laser at wavelengths near the GaAs band edge in the high-reflectance bandwidth of the cavity Bragg mirrors. When the structure was designed with low mirror reflectances [(R1R2)1/2=90%] to operate below the lasing threshold, the cavity resonance bandwidth was sufficiently broad to permit homogeneous hologram readout over a large (several square millimeters) area. Diffraction efficiencies of approximately 10% were predicted and approached experimentally. These results represent a first step toward the realization of a holographic vertical-cavity surface-emitting laser structure.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Bragg holography in active semiconductor microcavities

H. Sun, D. D. Nolte, Jim Hyland, and Eric Harmon
J. Opt. Soc. Am. B 32(7) 1406-1413 (2015)

Active-cavity vertical-cavity surface-emitting laser eigenmodes with simple analytic representation

S. Riyopoulos, D. Dialetis, J. Inman, and A. Phillips
J. Opt. Soc. Am. B 18(9) 1268-1284 (2001)

Ultrafast active phase conjugation in broad-area semiconductor laser amplifiers

Edeltraud Gehrig and Ortwin Hess
J. Opt. Soc. Am. B 18(7) 1036-1040 (2001)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.