OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 3 — Mar. 1, 2001
  • pp: 257–263

Dynamic holography in a broad-area optically pumped vertical GaAs microcavity

David D. Nolte, Karrin M. Kwolek, Chet Lenox, and Ben Streetman  »View Author Affiliations

JOSA B, Vol. 18, Issue 3, pp. 257-263 (2001)

View Full Text Article

Acrobat PDF (189 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A broad-surface-area vertical GaAs microcavity was operated as an adaptive holographic film. The cavity mirrors were transparent to high-energy (millijoules per square centimeter) hologram writing pulses at a wavelength of 730 nm that generated optically pumped gain gratings in a 1-μm-thick active layer of GaAs. The gain gratings were probed with a low-intensity (mW) tunable laser at wavelengths near the GaAs band edge in the high-reflectance bandwidth of the cavity Bragg mirrors. When the structure was designed with low mirror reflectances [(R1R2)1/2=90%] to operate below the lasing threshold, the cavity resonance bandwidth was sufficiently broad to permit homogeneous hologram readout over a large (several square millimeters) area. Diffraction efficiencies of approximately 10% were predicted and approached experimentally. These results represent a first step toward the realization of a holographic vertical-cavity surface-emitting laser structure.

© 2001 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(090.2900) Holography : Optical storage materials
(140.5960) Lasers and laser optics : Semiconductor lasers
(160.3380) Materials : Laser materials
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(230.1150) Optical devices : All-optical devices

David D. Nolte, Karrin M. Kwolek, Chet Lenox, and Ben Streetman, "Dynamic holography in a broad-area optically pumped vertical GaAs microcavity," J. Opt. Soc. Am. B 18, 257-263 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1990).
  2. D. D. Nolte and M. R. Melloch, “Photorefractive quantum wells and thin films,” in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 373–451.
  3. D. D. Nolte, “Semi-insulating semiconductor heterostructures: Optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999).
  4. S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999).
  5. Q. N. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, “Photorefractive quantum wells: transverse Franz–Keldysh geometry,” J. Opt. Soc. Am. B 9, 1626–1641 (1992).
  6. A. Partovi, A. M. Glass, T. H. Chiu, and D. T. H. Liu, “High-speed joint-transform optical image correlator using GaAs/AlGaAs semi-insulating multiple quantum wells and laser diodes,” Opt. Lett. 18, 906–908 (1993).
  7. W. S. Rabinovich, S. R. Bowman, R. Mahon, A. Walsh, G. Beadie, L. Adler, D. S. Katzer, and K. Ikossi Anastasiou, “Gray-scale response of multiple quantum well spatial light modulators,” J. Opt. Soc. Am. B 13, 2235–2241 (1996).
  8. I. Lahiri, D. D. Nolte, M. R. Melloch, and M. B. Klein, “Oscillatory mode coupling and electrically strobed gratings in photorefractive quantum-well diodes,” Opt. Lett. 23, 49–51 (1998).
  9. I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998).
  10. Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998).
  11. Y. Ding, R. M. Brubaker, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells,” Opt. Lett. 22, 718–721 (1997).
  12. Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Real-time edge enhancement of femtosecond time-domain images by use of photorefractive quantum wells,” Opt. Lett. 22, 1101–1103 (1997).
  13. R. Jones, M. Tziraki, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Direct-to-video holographic 3-D imaging using photorefractive multiple quantum well devices,” Opt. Express 2, 439–448 (1998); http://epubs.osa.org/opticsexpress.
  14. R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, “Direct-to-video holographic readout in quantum wells for 3-D imaging through turbid media,” Opt. Lett. 23, 103–105 (1998).
  15. D. D. Nolte and K. M. Kwolek, “Diffraction from a short-cavity Fabry–Perot: applications to photorefractive quantum wells,” Opt. Commun. 115, 606–616 (1995).
  16. Y. Ding, A. M. Weiner, M. R. Melloch, and D. D. Nolte, “Adaptive all-order dispersion compensation of ultrafast laser pulses using dynamic spectral holography,” Appl. Phys. Lett. 75, 3255–3257 (1999).
  17. M. J. Damzen, R. P. M. Green, and K. S. Syed, “Self-adaptive solid-state laser oscillator formed by dynamic gain-grating holograms,” Opt. Lett. 20, 1704–1706 (1995).
  18. A. Brignon and J. P. Huignard, “Energy efficiency of phase conjugation by saturable-gain degenerate four-wave mixing in Nd: YAG amplitudes,” Opt. Commun. 119, 171–177 (1995).
  19. M. J. Damzen, S. Camacho Lopez, and R. P. M. Green, “Wave-mixing and vector phase conjugation by polarization-dependent saturable absorption in Cr4+/:YAG,” Phys. Rev. Lett. 76, 2894–2897 (1996).
  20. K. S. Syed, G. J. Crofts, R. P. M. Green, and M. J. Damzen, “Vectorial phase conjugation via four-wave mixing in isotropic saturable-gain media,” J. Opt. Soc. Am. B 14, 2067–2078 (1997).
  21. R. P. M. Green, D. Udaiyan, G. J. Crofts, D. H. Kim, and M. J. Damzen, “Holographic laser oscillator which adaptively corrects for polarization and phase distortions,” Phys. Rev. Lett. 77, 3533–3536 (1996).
  22. A. Brignon, L. Loiseau, C. Larat, J. Huignard, and J. Pocholle, “Phase conjugation in a continuous-wave diode-pumped Nd:YVO4 laser,” Appl. Phys. B 69, 159–162 (1999).
  23. H. C. Casey and M. B. Panish, Heterostructure Lasers (Academic, New York, 1978).
  24. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
  25. T. E. Sale, Vertical Cavity Surface Emitting Lasers (Wiley, New York, 1995)
  26. K. M. Kwolek, M. R. Melloch, D. D. Nolte, and G. A. Brost, “Diffractive quantum-well asymmetric Fabry–Perot: transverse-field photorefractive geometry,” Appl. Phys. Lett. 67, 736–738 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited