OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 3 — Mar. 1, 2001
  • pp: 264–276

Optical properties of Dy3+- and Nd3+-doped KPb2Cl5

M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev  »View Author Affiliations


JOSA B, Vol. 18, Issue 3, pp. 264-276 (2001)
http://dx.doi.org/10.1364/JOSAB.18.000264


View Full Text Article

Acrobat PDF (282 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical properties including radiative quantum efficiencies, cross-relaxation coefficients, refractive index, energy-gap law parameters, and maximum phonon energy are presented for a new low-phonon-frequency, nonhygroscopic host crystal potassium lead chloride (KPb2Cl5) doped with Dy3+ and Nd3+. Assuming that the total decay rate (W) from each level is composed of radiative (Arad), multiphonon (WMP), and concentration-dependent cross-relaxation (Wc) rates (W=Arad+WMP+Wc), we determined radiative quantum efficiencies (ηrad=Arad/W) from emission data for five samples of various Dy3+ concentrations (N0). These results were compared with values calculated from a Judd–Ofelt analysis of the absorption spectrum. This technique required identification of cross-relaxation pathways. A cross-relaxation coefficient k=1.83×10−37 cm6 s−1 (where Wc=kN02) was measured for the Dy3+ 6H9/2+6F11/2 level. The measured multiphonon decay rates yielded energy-gap law (WMP[ΔE]≈B exp[−βΔE]) parameters B=3.72×109 s−1 and β=1.16× 10−2 cm, indicating that laser action should be possible to near 9 μm (ΔE=1100 cm−1) in this laser host at room temperature.

© 2001 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers

Citation
M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, "Optical properties of Dy3+- and Nd3+-doped KPb2Cl5," J. Opt. Soc. Am. B 18, 264-276 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-3-264


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. Schaafsma, L. B. Shaw, B. Cole, J. S. Sanghera, and I. D. Aggarwal, “Modeling of Dy3+-doped GeAsSe glass 1.3-μm optical fiber amplifiers,” IEEE Photon. Technol. Lett. 10, 1548–1550 (1998).
  2. S. Tanabe, T. Hanada, M. Watanabe, T. Hayashi, and N. Soga, “Optical properties of dysprosium-doped low-phonon-energy glasses for a potential 1.3-μm optical amplifier,” J. Am. Ceram. Soc. 78, 2917–2922 (1995).
  3. K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Spectroscopy Of Dy3+ in Ge–Ga–S glass and its suitability for 1.3-μm fiber-optic amplifier applications,” Opt. Lett. 19, 904–906 (1994).
  4. D. W. Hewak, B. N. Samson, J. A. M. Neto, R. I. Laming, and D. N. Payne, “Emission at 1.3-μm from dysprosium-doped GaLaS glass,” Electron. Lett. 30, 968–970 (1994).
  5. Y. Guimond, J. L. Adam, A. M. Jurdyc, J. Mugnier, B. Jacquier, and X. H. Zhang, “Dy3+-doped stabilized GeGaS glasses for 1.3 μm optical fiber amplfiers,” Opt. Mater. 12, 467–471 (1999).
  6. M. C. Nostrand, R. H. Page, S. A. Payne, W. F. Krupke, and P. G. Schunemann, “Room-temperature laser action at 4.3–4.4 μm in CaGa2S4:Dy3+,” Opt. Lett. 24, 1215–1217 (1999).
  7. T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission and ion–ion interactions in thulium- and terbium-doped gallium lanthanum sulfide glass,” J. Opt. Soc. Am. B 16, 308–316 (1999).
  8. T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40, 329–335 (1999).
  9. S. R. Bowman, L. B. Shaw, B. J. Feldman, and J. Ganem, “A 7-μm praseodymium-based solid-state laser,” IEEE J. Quantum Electron. 32, 646–649 (1996).
  10. R. H. Page, K. I. Schaffers, S. A. Payne, and W. F. Krupke, “Dy-doped chlorides as gain media for 1.3 μm telecommunications amplifiers,” J. Lightwave Technol. 15, 786–793 (1997).
  11. A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Eliseev, W. F. Krupke, S. A. Payne, R. W. Solarz, M. C. Nostrand, and R. H. Page, “Dy3+-doped crystals of double chlorides and double fluorides as the active media of IR solid-state lasers and telecommunication amplifiers,” J. Opt. Technol. 66, 460–462 (1999).
  12. A. Tkachuk, S. Ivanova, L. Isaenko, A. Yelisseyev, S. A. Payne, R. W. Solarz, M. C. Nostrand, and R. H. Page, “Comparative spectroscopic study of the Dy3+ doped double chloride and double fluoride crystals for telecommunication amplifiers and IR lasers,” Acta Phys. Pol. A 95, 381–394 (1999).
  13. L. I. Isaenko, A. Yelisseyev, V. A. Nadolinny, V. I. Pashkov, M. C. Nostrand, S. A. Payne, R. H. Page, and R. W. Solarz, “Spectroscopic investigation of rare-earth-doped chloride single crystals for telecommunications amplifiers,” in Solid State Lasers VII, R. Scheps, ed., Proc. SPIE 3265, 242–249 (1998).
  14. M. C. Nostrand, R. H. Page, S. A. Payne, W. F. Krupke, P. G. Schunemann, and L. I. Isaenko, “Spectroscopic data for infrared transitions in CaGa2S4:Dy3+ and KPb2Cl5:Dy3+,” in Advanced Solid-State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 524–528.
  15. K. Nitsch, M. Dusek, M. Nikl, K. Polak, and M. Rodova, “Ternary alkali lead chlorides–crystal-growth, crystal-structure, absorption and emission properties,” Prog. Cryst. Growth Charact. 30, 1–22 (1995).
  16. S. R. Bowman, S. K. Searles, J. Ganem, and P. Schmidt, “Further investigations of potential 4 μm laser materials,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 487–490.
  17. M. C. Nostrand, R. H. Page, S. A. Payne, W. F. Krupke, P. G. Schunemann, and L. I. Isaenko, “Room temperature CaGa2S4:Dy3+ laser action at 2.43 and 4.31 μm and KPb2Cl5:Dy3+ laser action at 2.43 μm,” in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 441–449.
  18. M. C. Nostrand, R. H. Page, S. A. Payne, W. F. Krupke, P. G. Schunemann, and L. I. Isaenko, “Laser demonstrations of rare-earth ions in low-phonon chloride and sulfide crystals,” in Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds., Vol. 34 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 459–463.
  19. M. Nikl, K. Nitsch, I. Velicka, J. Hybler, K. Polak, and T. Fabian, “Photoluminescence of KPb2Cl5,” Phys. Status Solidi B 168, K37–K42 (1991).
  20. G. Dieke, Spectra and Energy Levels of Rare-Earth Ions in Crystals (Interscience, New York, 1968).
  21. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
  22. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
  23. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, New York, 1996).
  24. W. F. Krupke, “Radiative transition probabilities within the 4f3 ground configuration of Nd: YAG,” IEEE J. Quantum Electron. QE-7, 153–159 (1971).
  25. B. G. Wybourne, Spectroscopic Properties of Rare Earths (Interscience, New York, 1965).
  26. B. G. Wybourne, “Structure of fn-configurations. II. f5 and f9 configurations,” J. Chem. Phys. 36, 2301–2310 (1962).
  27. C. K. Jorgensen and B. R. Judd, “Hypersensitive pseudoquadrupole transitions in lanthanides,” Mol. Phys. 8, 281–290 (1964).
  28. R. S. Quimby, “Active phenomena in doped halide glasses,” in Fluoride Glass Fiber Optics, I. D. Aggarwal and G. Lu, eds. (Academic, San Diego, Calif., 1991), p. 356.
  29. J. A. Caird, A. J. Ramponi, and P. R. Staver, “Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses,” J. Opt. Soc. Am. B 8, 1391–1403 (1991).
  30. A. I. Burshtein, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882–885 (1972).
  31. F. Auzel, “Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” Phys. Rev. B 13, 2809–2817 (1976).
  32. A. Braud, S. Girard, J. L. Doualan, and R. Moncorge, “Spectroscopy and fluorescence dynamics of (Tm3+, Tb3+) and (Tm3+, Eu3+) doped LiYF4 single crystals for 1.5-μm laser operation,” IEEE J. Quantum Electron. 34, 2246–2255 (1998).
  33. R. S. Quimby, K. T. Gahagan, B. G. Aitken, and M. A. Newhouse, “Self-calibrating quantum efficiency measurement technique and application to Pr3+-doped sulfide glass,” Opt. Lett. 20, 2021–2023 (1995).
  34. J. A. Skidmore, B. L. Freitas, C. E. Reinhardt, E. J. Utterback, R. H. Page, and M. A. Emanuel, “High-power operation of InGaAsP-InP laser diode array at 1.73 μm,” IEEE Photon. Technol. Lett. 9, 1334–1336 (1997); D. T. Schaafsma, L. B. Shaw, B. Cole, J. S. Sanghera, and I. D. Aggarwal, “Modeling of Dy3+-doped GeAsSe glass 1.3-μm optical fiber amplifiers,” IEEE Photon. Technol. Lett. 10, 1548–1550 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited