OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 3 — Mar. 1, 2001
  • pp: 291–297

Photorefractive running hologram for materials characterization

Ivan de Oliveira and Jaime Frejlich  »View Author Affiliations


JOSA B, Vol. 18, Issue 3, pp. 291-297 (2001)
http://dx.doi.org/10.1364/JOSAB.18.000291


View Full Text Article

Acrobat PDF (163 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a theoretical model for a photorefractive running hologram in bulk-absorbing materials in the presence of self-diffraction and use this model to analyze experiments for photorefractive materials characterization. A nonperturbative technique that allows one to measure at the same time the diffraction efficiency and the output beam’s phase shift is reported, and its advantages are discussed. We use this technique and apply the theoretical model to compute some parameters for the electron-charge carriers (Debye screening length ls≈0.03 μm, diffusion length LD≈0.14 μm, and photoexcitation quantum efficiency Φ≈0.45) at the 514.5-nm-wavelength laser line for a nominally undoped Bi12TiO20 crystal. Particular experimental features are detected and assumed to be consequences of hole–electron competition in this sample.

© 2001 Optical Society of America

OCIS Codes
(090.7330) Holography : Volume gratings
(160.2900) Materials : Optical storage materials
(160.5320) Materials : Photorefractive materials
(190.5330) Nonlinear optics : Photorefractive optics
(190.7070) Nonlinear optics : Two-wave mixing

Citation
Ivan de Oliveira and Jaime Frejlich, "Photorefractive running hologram for materials characterization," J. Opt. Soc. Am. B 18, 291-297 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-3-291


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J.-P. Huignard and A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249–254 (1981).
  2. J.-P. Huignard and A. Marrakchi, “Two-wave mixing and energy transfer in Bi12SiO20 crystals: application to image amplification and vibrational analysis,” Opt. Lett. 6, 622–624 (1981).
  3. S. I. Stepanov, V. V. Kulikov, and M. P. Petrov, “‘Running’ holograms in photorefractive Bi12TiO20 crystals,” Opt. Commun. 44, 19–23 (1982).
  4. Ph. Refregier, L. Solymar, H. Rajbenbach, and J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
  5. G. C. Valley, “Two-wave mixing with an applied field and a moving grating,” J. Opt. Soc. Am. B 1, 868–873 (1984).
  6. G. Brost, J. Norman, S. Odoulov, K. Shcherbin, A. Shumelyuk, and V. Taranov, “Gain spectra of beam coupling in photorefractive semiconductors,” J. Opt. Soc. Am. B 15, 2083–2090 (1998).
  7. B. Imbert, H. Rajbenbach, S. Mallick, J. P. Herriau, and J.-P. Huignard, “High photorefractive gain in two-beam coupling with moving fringes in GaAs:Cr crystals,” Opt. Lett. 13, 327–329 (1988).
  8. J. Kumar, G. Albanese, and W. H. Steier, “Measurement of two-wave mixing gain in GaAs with a moving grating,” Opt. Commun. 63, 191–193 (1987).
  9. B. I. Sturman, M. Mann, J. Otten, and K. H. Ringhofer, “Space-charge waves and their parametric excitation,” J. Opt. Soc. Am. B 10, 1919–1932 (1993).
  10. B. I. Sturman, E. Shamonina, M. Mann, and K. H. Ringhofer, “Space-charge waves in photorefractive ferroelectrics,” J. Opt. Soc. Am. B 12, 1642–1650 (1995).
  11. I. Aubrecht, H. C. Ellin, A. Grunnet-Jepsen, and L. Solymar, “Space-charge field in photorefractive materials enhanced by moving fringes: comparison of hole–electron transport models,” J. Opt. Soc. Am. B 12, 1918–1923 (1995).
  12. H. C. Pedersen and P. M. Johansen, “Space-charge wave theory of photorefractive parametric amplification,” J. Opt. Soc. Am. B 16, 1185–1188 (1999).
  13. J. Frejlich, P. M. Garcia, and L. Cescato, “Adaptive fringe-locked running hologram in photorefractive crystals: errata,” Opt. Lett. 15, 1247 (1990).
  14. D. J. Webb and L. Solymar, “The effects of optical activity and absorption on two-wave mixing in Bi12SiO20,” Opt. Commun. 83, 287–294 (1991).
  15. E. Shamonina, K. H. Ringhofer, P. M. Garcia, A. A. Freschi, and J. Frejlich, “Shape-asymmetry of the diffraction effi-ciency in Bi12TiO20 crystals: the simultaneous influence of absorption and higher harmonics,” Opt. Commun. 141, 132–136 (1997).
  16. T. J. Hall, R. Jaura, L. M. Connors, and P. D. Foote, “The photorefractive effect: a review,” Prog. Quantum Electron. 10, 77–146 (1985).
  17. G. Brost, K. M. Magde, J. J. Larkin, and M. T. Harris, “Modulation dependence of the photorefractive response with moving gratings: numerical analysis and experiment,” J. Opt. Soc. Am. B 11, 1764–1772 (1994).
  18. G. C. Valley, “Erase rates in photorefractive materials with two photoactive species,” Appl. Opt. 22, 3160–3164 (1983).
  19. K. Buse, “Light-induced charge transport processes in photorefractive crystals. I.:Models and experimental methods,” Appl. Phys. B 64, 273–291 (1997).
  20. F. P. Strohkendl, J. M. C. Jonathan, and R. W. Hellwarth, “Hole–electron competition in photorefractive gratings,” Opt. Lett. 11, 312–314 (1986).
  21. G. Pauliat, M. Allain, J. C. Launay, and G. Roosen, “Optical evidence of a photorefractive effect due to holes in Bi12GeO20 crystals,” Opt. Commun. 61, 321–324 (1987).
  22. G. Picoli, P. Gravey, C. Ozkul, and V. Vieux, “Theory of two-wave mixing gain enhancement in photorefractive InP: Fe: a new mechanism of resonance,” J. Appl. Phys. 66, 3798–3813 (1989).
  23. S. Stepanov and P. Petrov, Photorefractive Materials and Their Applications I, P. Günter and J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1988); Vol. 61, Chap. 9, pp. 263–289.
  24. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. steady state,” Ferroelectrics 22, 949–960 (1979).
  25. J. Frejlich, P. M. Garcia, K. H. Ringhofer, and E. Shamonina, “Phase modulation in two-wave mixing for dynamically recorded gratings in photorefractive materials,” J. Opt. Soc. Am. B 14, 1741–1749 (1997).
  26. P. D. Foote and T. J. Hall, “Influence of optical activity on two beam coupling constants in photorefractive Bi12SiO20,” Opt. Commun. 57, 201–206 (1986).
  27. J. Frejlich, A. A. Freschi, P. M. Garcia, E. Shamonina, V. Ya. Gayvoronsky, and K. H. Ringhofer, “Feedback-controlled running holograms in strongly absorbing photorefractive materials,” J. Opt. Soc. Am. B 17, 1517–1521 (2000).
  28. P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications I, P. Günter and J.-P. Huignard, eds. (Springer-Verlag, Berlin, 1988); Vol. 61, Chap. 2, pp. 7–73.
  29. J. Frejlich and P. M. Garcia, “Quasi-permanent hole-photorefractive and photochromic effects in Bi12TiO20 crystals,” Appl. Phys. A 55, 49–54 (1992).
  30. V. V. Prokofiev, J. F. Carvalho, J. P. Andreeta, N. J. H. Gallo, A. C. Hernandes, J. Frejlich, A. A. Freschi, P. M. Garcia, J. Maracaiba, A. A. Kamshilin, and T. Jaaskelainen, “Growth and characterization of photorefractive Bi12TiO20 single crystals,” Cryst. Res. Technol. 30, 171–176 (1995).
  31. S. Mallick and D. Rouède, “Influence of the polarization direction on the two-beam coupling in photorefractive Bi12SiO20: diffusion regime,” Appl. Phys. B 43, 239–245 (1987).
  32. I. de Oliveira and J. Frejlich, “Gain and stability in photorefractive holograms under applied electric field,” Phys. Rev. A (to be published).
  33. S. Bian and J. Frejlich, “Actively stabilized holographic recording for the measurement of photorefractive properties of a Ti-doped KNSBN crystal,” J. Opt. Soc. Am. B 12, 2060–2065 (1995).
  34. S. Bian and J. Frejlich, “Photorefractive response time measurement in GaAs using phase modulation in two-wave mixing,” Opt. Lett. 19, 1702–1704 (1994).
  35. A. Grunnet-Jepsen, I. Aubrecht, and L. Solymar, “Investigation of the internal field in photorefractive materials and measurement of the effective electro-optic coefficient,” J. Opt. Soc. Am. B 12, 921–929 (1995).
  36. A. A. Freschi, P. M. Garcia, and J. Frejlich, “Charge-carriers diffusion length in photorefractive crystals computed from the initial hologram phase shift,” Appl. Phys. Lett. 71, 2427–2429 (1997).
  37. J. Feinberg, D. Heiman, A. R. Tanguay, Jr., and R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
  38. I. de Oliveira and J. Frejlich, “Dielectric relaxation time measurement in absorbing photorefractive materials,” Opt. Commun. 178, 251–255 (2000).
  39. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited