OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 3 — Mar. 1, 2001
  • pp: 298–301

Induced chirality in a polyisocyanate polymeric film and the change in polarization rotation under an external electric field

S. H. Han, J. W. Wu, J.-W. Kang, Y.-D. Shin, J.-S. Lee, and J.-J. Kim  »View Author Affiliations

JOSA B, Vol. 18, Issue 3, pp. 298-301 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (122 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A polyisocyanate random copolymer that contains an asymmetric chiral carbon center and Disperse Red 1 dye nonlinear optical chromophores is synthesized. The optical activity is measured in the visible and near-infrared spectral ranges, confirming the existence of induced optical chirality in the copolymer film. On application of a corona field to the slab waveguide copolymer film, the polarization rotation at the wavelength of 1.3 µm is changed, opening the possibility of chiral electro-optic modulation in a chiral polymeric waveguide thin film.

© 2001 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(190.0190) Nonlinear optics : Nonlinear optics
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter

S. H. Han, J. W. Wu, J.-W. Kang, Y.-D. Shin, J.-S. Lee, and J.-J. Kim, "Induced chirality in a polyisocyanate polymeric film and the change in polarization rotation under an external electric field," J. Opt. Soc. Am. B 18, 298-301 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Verbiest, M. Kauranen, and A. Persoons, “Second-order nonlinear optical properties of chiral thin films,” J. Mater. Chem. 9, 2005–2012 (1999). [CrossRef]
  2. T. Verbiest, S. Van Elshocht, M. Kauranen, L. Hellemans, J. Snauwaert, C. Nuckolls, T. Katxz, and A. Persoons, “Strong enhancement of nonlinear optical properties through supramolecular chirality,” Science 282, 913–915 (1998). [CrossRef] [PubMed]
  3. J. D. Byers, H. I. Yee, and J. M. Hicks, “A second harmonic generation analog of optical rotatory dispersion for the study of chiral monolayers,” J. Chem. Phys. 101, 6233–6241 (1994). [CrossRef]
  4. T. Verbiest, M. Kauranen, A. Persoons, M. Ikonen, J. Kurkela, and H. Lemmetyinen, “Nonlinear optical activity and biomolecular chirality,” J. Am. Chem. Soc. 116, 9203–9205 (1994). [CrossRef]
  5. M. Chien, Y. Kim, and H. Grebel, “Mode conversion in optically active and isotropic waveguides,” Opt. Lett. 14, 826–828 (1989). [CrossRef] [PubMed]
  6. D. Beljonne, Z. Shuai, J. L. Bredas, M. Kauranen, T. Verbiest, and A. Persoons, “Electro-optic response of chiral helicenes in isotropic media,” J. Chem. Phys. 108, 1301–1304 (1998). [CrossRef]
  7. D. M. Neville and D. F. Bradley, “Anomalous rotatory dispersion of acridine orange–native deoxyribonucleic acid complexes,” Biochim. Biophys. Acta 50, 397–399 (1961). [CrossRef] [PubMed]
  8. J. S. Lee and S. W. Ryu, “Anionic living polymerization of 3-(triethoxysilyl)propyl isocyanate,” Macromolecules 32, 2085–2088 (1999). [CrossRef]
  9. M. Kauranen, T. Verbiest, C. Boutton, M. N. Teerenstra, K. Clays, A. J. Schouten, R. J. M. Nolte, and A. Persoons, “Supramolecular second-order nonlinearity of polymers with orientationally correlated chromophores,” Science 270, 966–969 (1995). [CrossRef]
  10. J. F. Nye, Physical Properties of Crystals (Oxford U. Press, Oxford, 1957).
  11. S. H. Han and J. W. Wu, “Polarization-interferometry measurement of the Pockels coefficient in a chiral Bi12SiO20 single crystal,” J. Opt. Soc. Am. B 17, 1205–1210 (2000). [CrossRef]
  12. The linear superposition principle should not be mistaken as meaning that 2ρ and δ are interchangeable. It rather states the fact that, for an electromagnetic wave propagating in a birefringent chiral medium, the total optical phase change Δ can be expressed in terms of two independent parameters 2ρ and δ that correspond to different optical properties, namely, the specific rotation and the birefringence. The proper description requires the Fresnel’s equation, which has been adopted in the current analysis reported here. See, for example, A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 4.
  13. C. Cantor and P. R. Schimmel, Biophysical Chemistry Part II: Techniques for the Study of Biological Structure and Function (Freeman, New York, 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited