OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 3 — Mar. 1, 2001
  • pp: 331–334

Light-induced metallization in laser-deposited gallium films

Kevin F. MacDonald, Vassili A. Fedotov, Robert W. Eason, Nikolay I. Zheludev, Andrei V. Rode, Barry Luther-Davies, and Vladimir I. Emel’yanov  »View Author Affiliations


JOSA B, Vol. 18, Issue 3, pp. 331-334 (2001)
http://dx.doi.org/10.1364/JOSAB.18.000331


View Full Text Article

Acrobat PDF (244 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have found that mirrors prepared upon silica glass by ultrafast pulsed laser deposition of elemental gallium show a highly reproducible and fully reversible light-induced reflectivity increase. The effect is explained as being due to nonthermal light-induced metallization of gallium at the interface.

© 2001 Optical Society of America

OCIS Codes
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(190.4400) Nonlinear optics : Nonlinear optics, materials

Citation
Kevin F. MacDonald, Vassili A. Fedotov, Robert W. Eason, Nikolay I. Zheludev, Andrei V. Rode, Barry Luther-Davies, and Vladimir I. Emel’yanov, "Light-induced metallization in laser-deposited gallium films," J. Opt. Soc. Am. B 18, 331-334 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-3-331


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. J. Bennett, S. Dhanjal, P. Petropoulos, D. J. Richardson, N. I. Zheludev, and V. I. Emel’yanov, “A photonic switch based on a gigantic reversible optical nonlinearity of liquefying gallium,” Appl. Phys. Lett. 73, 1787–1789 (1998).
  2. P. Petropoulos, H. S. Kim, D. J. Richardson, and N. I. Zheludev, “Measurement of the nonlinear optical phase response of liquefying gallium,” in Conference on Lasers and Electro-Optics, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 2000), paper cwk 42.
  3. A. V. Rode, M. Samoc, B. Luther-Davies, E. G. Gamaly, K. F. MacDonald, and N. I. Zheludev, “Dynamics of light-induced reflectivity switching in gallium films, deposited on silica by pulsed laser ablation,” Opt. Lett. (to be published) http://arXiv.org/abs/physics/0010017.
  4. V. Albanis, V. A. Fedotov, K. F. MacDonald, V. I. Emel’yanov, N. I. Zheludev, R. J. Knize, B. V. Zhdanov, and A. V. Rode, “Gigantic broadband optical nonlinearity in gallium films deposited by ultrafast laser ablation,” in Conference on Lasers and Electro-Optics/Europe 2000, Nice, France.
  5. E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulse-rate lasers. I. Theoretical considerations,” J. Appl. Phys. 85, 4213–4221 (1999).
  6. A. V. Rode, B. Luther-Davies, and E. G. Gamaly, “Ultrafast ablation with high-pulse-rate lasers. II. Experiments on laser deposition of amorphous carbon films,” J. Appl. Phys. 85, 4222–4230 (1999).
  7. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985), Vol. 1.
  8. E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Laser ablation of carbon at the threshold of plasma formation,” Appl. Phys. A Suppl. 69, 121–127 (1999); http://dx.doi.org/10.1007/s003399900387 (December 22, 1999).
  9. J. G. Dash, “Surface melting,” Contemp. Phys. 30, 89–100 (1989).
  10. M. Bernasconi, G. L. Chiarotti, and E. Tosatti, “Ab initio calculations of structural and electronic properties of gallium solid-state phases,” Phys. Rev. B 52, 9988–9998 (1995).
  11. N. R. Comins, “The optical properties of liquid metals,” Philos. Mag. 25, 817–831 (1972).
  12. O. Hunderi and R. Ryberg, “Amorphous gallium—a free electron metal,” J. Phys. F 4, 2096–2102 (1974).
  13. L. Ward, The Optical Constants of Bulk Materials and Films, 2nd ed. (Institute of Physics, Bristol, UK, 1994).
  14. R. Koffman, P. Cheyssac, and J. Richard, “Optical properties of Ga monocrystal in the 0.3–5-eV range,” Phys. Rev. B 16, 5216–5224 (1977).
  15. R. Sh. Teshev and A. A. Shebzukhov, “Electronic characteristics and dispersion of optical constants of liquid gallium in the 0.4–2.5-μm spectral region,” Opt. Spektrosk. 65, 1178–1181 (1988).
  16. G. Fritsch and E. Luscher, “On surface melting of gallium,” Philos. Mag. A 48, 21–29 (1983).
  17. W. J. Huisman, J. F. Peters, M. J. Zwanenberg, S. A. De Vries, T. E. Derry, D. Abernathy, and J. F. Van Der Veen, “Layering of a liquid metal in contact with a hard wall,” Nature 390, 379–381 (1997).
  18. R. C. Weast, ed., Handbook of Chemistry and Physics, 70th ed. (CRC, Boca Raton, Fla., 1989).
  19. X. G. Gong, G. L. Chiarotti, M. Parrinello, and E. Tosatti, “α-Gallium: a metallic molecular crystal,” Phys. Rev. B 43, 14, 277–14, 280 (1991).
  20. S. V. Demishev, T. V. Ischenko, and S. J. Blundell, “The structure of the phase transformation wave in the discrete model of a non-equilibrium phase transition,” J. Phys.: Condens. Matter 7, 9173–9184 (1995).
  21. P. Petropoulos, H. L. Offerhaus, D. J. Richardson, S. Dhanjal, and N. I. Zheludev, “Passive Q-switching of fiber lasers using a broadband liquefying gallium mirror,” Appl. Phys. Lett. 74, 3619–3621 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited