OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 3 — Mar. 1, 2001
  • pp: 363–369

Wavelength standard at 543 nm and the corresponding 127I2 hyperfine transitions

Wang-Yau Cheng and Jow-Tsong Shy  »View Author Affiliations

JOSA B, Vol. 18, Issue 3, pp. 363-369 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (258 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have constructed two compact iodine-stabilized 543-nm He–Ne lasers and studied the corresponding  127I2 hyperfine transitions. The frequency stability of our lasers reaches 6.2×10-14 during a 30-s sampling time; and the resettability is less than 2 kHz. The frequency intervals of the hyperfine peaks were measured and the corresponding hyperfine constants were determined. The line width of each main line was measured. The properties of the b10 line, which is suggested to serve as the wavelength standard at 543 nm, were investigated in detail for what is to our knowledge the first time.

© 2001 Optical Society of America

OCIS Codes
(020.2930) Atomic and molecular physics : Hyperfine structure
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(300.1030) Spectroscopy : Absorption
(300.3700) Spectroscopy : Linewidth

Wang-Yau Cheng and Jow-Tsong Shy, "Wavelength standard at 543 nm and the corresponding 127I2 hyperfine transitions," J. Opt. Soc. Am. B 18, 363-369 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. BIPM, “Documents concerning the new definition of the meter,” Metrologia 19, 163–177 (1984). [CrossRef]
  2. BIPM, Proc. Verb. Com. Int. Poids et Measures 60, Recommendation 2, CI-1992 (BIPM, Paris, France, 1992).
  3. M. Erin, B. Karaboce, I. Malinovsky, A. Titov, H. Ugur, H. Darnedde, and F. Riehle, “Progress in stabilization of the He–Ne/127I2 wavelength standard at 633 nm and results of an international comparison between the PTB and the UME,” Metrologia 32, 301–310 (1995/96). [CrossRef]
  4. J.-M. Chartier and A. Chartier, “International comparisons of He–Ne lasers stabilized with 127I2 at λ ~ 633 nm (July 1993 to September 1995). I. General,” Metrologia 34, 297–300 (1997). [CrossRef]
  5. B. Stahlberg, B. Ikonen, J. Haldin, J. Hu, T. Ahola, K. Riski, L. Pendrill, U. Karn, J. Henningsen, H. Simonsen, A. Chartier, and J.-M. Chartier, “International comparisons of He–Ne lasers stabilized with 127I2 at λ ~ 633 nm (July 1993 to September 1995). II. Second comparison of Northern European lasers,” Metrologia 34, 301–307 (1997). [CrossRef]
  6. V. Navratil, A. Fodrekova, R. Gata, J. Blabla, P. Balling, M. Ziegler, V. Zeleny, F. Petru, J. Lazar, Z. Vesela, J. Gliwa-Gliwinski, J. Walczuk, E. Banrti, K. Tomanyiczka, A. Chartier, and J.-M. Chartier, “International comparison of He–Ne lasers stabilized with 127I2 at λ ~ 633 nm (July 1993 to September 1995). III. Second comparison of Eastern European lasers,” Metrologia 35, 799–806 (1998). [CrossRef]
  7. J.-M. Chartier, J. L. Hall, and M. Glaser, “Identification of the I2 saturation absorption lines excited at 543 nm with the external beam of the green He–Ne laser,” presented at the Conference on Precision Electromagnetic Measurements, Gaithersburg, Md., June 1986.
  8. U. Brand and J. Helmcke, “Frequency stabilization of a 543.5 nm He–Ne laser to an iodine absorption line,” in Proceedings of the Fourth Symposium on Frequency Standard and Metrology, A. De Marchi, ed. (Springer-Verlag, Berlin, 1989), pp. 467–468.
  9. J.-M. Chartier, S. Fredin-Picard, and L. Robertsson, “Frequency-stabilized 543 nm HeNe laser systems: a new candidate for the realization of the meter?” Opt. Commun. 74, 87–92 (1989). [CrossRef]
  10. H. Simonsen and O. Poulsen, “Frequency stabilization of an internal mirror HeNe laser at 543.5 nm to I2-saturated absorptions,” Appl. Phys. B 50, 7–12 (1990). [CrossRef]
  11. U. Brand, “Frequency stabilization of a HeNe laser at 543.5 nm wavelength using frequency-modulation spectroscopy,” Opt. Commun. 100, 361–373 (1993). [CrossRef]
  12. T. Lin, Y.-W. Liu, W.-Y. Cheng, J.-T. Shy, B.-R. Jih, and K.-L. Ko, “Iodine-stabilized 543 nm He–Ne lasers,” Opt. Commun. 107, 389–394 (1994). [CrossRef]
  13. H. R. Simonsen, U. Brand, and F. Riehle, “Intercomparison of two iodine-stabilized He–Ne lasers at λ=543 nm,” Metrologia 31, 341–347 (1995). [CrossRef]
  14. W.-Y. Cheng, J.-T. Shy, and T. Lin, “A compact iodine-stabilized HeNe laser and crossover resonances at 543 nm,” Opt. Commun. 156, 170–177 (1998); W.-Y. Cheng, Y.-S. Chen, C.-Y. Cheng, J.-T. Shy, and T. Lin, “Frequency stabilization and measurements of 543 nm HeNe lasers,” Opt. Quantum Electron. 32, 299–311 (2000). [CrossRef]
  15. T. J. Quinn, “International reports mise en pratique of definition of the Meter (1992),” Metrologia 30, 523–541 (1993/1994). [CrossRef]
  16. J. L. Hall, “The laser absolute wavelength standard problem,” IEEE J. Quantum Electron. QE-4, 638–641 (1968). [CrossRef]
  17. H. Sasada and O. Kubota, “Frequency of Lamb-dip-stabilized 1.52 μm He–Ne lasers,” Appl. Phys. B 55, 186–188 (1992). [CrossRef]
  18. C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975), Chaps. 6–9.
  19. N. F. Ramsey, Molecular Beams (Oxford U. Press, London, 1956).
  20. P. R. Bunker and G. R. Hanes, “Nuclear spin–spin coupling in the spectrum of I2 at 6328 angstroms,” Chem. Phys. Lett. 28, 377–379 (1974). [CrossRef]
  21. L. A. Hackel, K. H. Casleton, S. G. Kukolich, and S. Ezekiel, “Observation of magnetic octupole and scalar spin–spin interaction in I2,” Phys. Rev. Lett. 35, 568–571 (1975). [CrossRef]
  22. S. Fredin-Picard and A. Razet, “On the hyperfine structure of 127I2 lines at the 543 nm wavelength of the HeNe laser,” Opt. Commun. 78, 149–152 (1990). [CrossRef]
  23. S. Fredin-Picard, “On the hyperfine structure of iodine” report BIPM-90/5 (BIPM, Paris, France, 1990).
  24. A. Yokozeki and J. S. Muenter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980). [CrossRef]
  25. M. Nakazawa, “Phase-sensitive detection on Lorentian line shape and its application to frequency stabilization of lasers,” J. Appl. Phys. 59, 2297–2305 (1986). [CrossRef]
  26. M. D. Rayman, M. P. Winters, and J. L. Hall, “Measurement of the hyperfine splittings of the R(12)26–0 and R(106)28–0 transitions in 127I2 at 543” (personal communication, JILA, Campus Box 440, University of Colorado, Colo. 80309–0440).
  27. J. Ye, L. Robertsson, S. Picard, L. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999). [CrossRef]
  28. A. Brillet, P. Cerez, and C. N. Man-Pichot, Precision Measurement and Fundamental Constants II, B. N. Taylor and W. D. Phillips, eds., NBS Spec. Publ. 617, 73–88 (1984).
  29. M. Broyer, J. Vique, and J. C. Lehmann, “Natural hyperfine and magnetic predissociation of the I2 B state. I. Theory,” J. Phys. 42, 937–978 (1981); “Hyperfine predissociation of molecular iodine,” J. Chem. Phys. 64, 4793–4794 (1976). [CrossRef]
  30. W. Demtroder, Laser Spectroscopy, 2nd ed. (Springer-Verlag, Berlin, 1992), Chap. 3.
  31. G. Herzberg, Molecular Spectra and Molecular Structure Spectra of Diatomic Molecules, 2nd ed., Vol. 1 of (Van Nostrand, Princeton, N.J., 1957), p. 433.
  32. P. Meystre and M. Sargent III, Elements of Quantum Optics, 2nd ed. (Springer-Verlag, Berlin, 1991), Chap. 5.
  33. D. A. McQuarrie, Statistical Thermodynamics (University Science, Mill Valley, Calif., 1973), Chap. 6.
  34. M. L. Eickhoff and J. L. Hall, “New optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. IM-44, 155–158 (1995). [CrossRef]
  35. L.-S. Ma and J. L. Hall, “Optical heterodyne spectroscopy enhanced by an external optical cavity: toward improved working standards,” IEEE J. Quantum Electron. 26, 2006–2012 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited