OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 3 — Mar. 1, 2001
  • pp: 379–387

Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy

Feng-Lei Hong, Jun Ye, Long-Sheng Ma, Susanne Picard, Christian J. Bordé, and John L. Hall  »View Author Affiliations


JOSA B, Vol. 18, Issue 3, pp. 379-387 (2001)
http://dx.doi.org/10.1364/JOSAB.18.000379


View Full Text Article

Acrobat PDF (173 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Doppler-free high-resolution spectroscopy is applied to molecular iodine at 532 nm by Nd:YAG lasers. The main hyperfine components as well as the crossover lines are measured for R(56)32–0 and P(54)32–0 transitions by heterodyne beating of two I2-stabilized lasers. The measured hyperfine splittings including both main and crossover lines are fitted to a four-term Hamiltonian, which includes the electric quadrupole, spin–rotation, tensor spin–spin, and scalar spin–spin interactions, with an average deviation of ∼1 kHz. Absolute values of the electric quadrupole hyperfine constants for both the upper and the lower states are obtained. The rotation dependence of the ground-state (v=0) electric quadrupole constant eQq is found to be eQq(J)=−2452.556(2)−0.000164(5)J(J+1)−0.000000005(2)J2(J+1)2 MHz.

© 2001 Optical Society of America

OCIS Codes
(020.2930) Atomic and molecular physics : Hyperfine structure
(120.3940) Instrumentation, measurement, and metrology : Metrology
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6390) Spectroscopy : Spectroscopy, molecular
(300.6460) Spectroscopy : Spectroscopy, saturation

Citation
Feng-Lei Hong, Jun Ye, Long-Sheng Ma, Susanne Picard, Christian J. Bordé, and John L. Hall, "Rotation dependence of electric quadrupole hyperfine interaction in the ground state of molecular iodine by high-resolution laser spectroscopy," J. Opt. Soc. Am. B 18, 379-387 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-3-379


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. D. Levenson and A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 10–20 (1972).
  2. H. J. Foth and F. Spieweck, “Hyperfine Structure of the R(98), 58–1 line of 127I2 at 514.5 nm,” Chem. Phys. Lett. 65, 347–352 (1979).
  3. Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2 with argon lasers at 5145 Å and 5017 Å. I. Main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
  4. G. R. Hanes and C. E. Dahlstrom, “Iodine hyperfine structure observed in saturated absorption at 633 nm,” Appl. Phys. Lett. 14, 362–364 (1969).
  5. P. Cérez and S. J. Bennett, “Helium–neon laser stabilized by saturated absorption in iodine at 612 nm,” Appl. Opt. 18, 1079–1083 (1979).
  6. J.-M. Chartier, S. Fredin-Picard, and L. Robertsson, “Frequency-stabilized 543 nm HeNe laser system: a new candidate for the realization of the meter?” Opt. Commun. 74, 87–92 (1989).
  7. B. Couillaud and A. Ducasse, “Saturated absorption experiments using a free running cw dye laser,” Opt. Commun. 13, 398–401 (1975).
  8. A. Razet and S. Picard, “A tabulation of calculations of the hyperfine structure in 127I2,” Metrologia 33, 19–27 (1996).
  9. J. L. Hall, L.-S. Ma, M. Taubman, B. Tiemann, F.-L. Hong, O. Pfister, and J. Ye, “Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser,” IEEE Trans. Instrum. Meas. 48, 583–586 (1999).
  10. A. Arie and R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm,” J. Opt. Soc. Am. B 10, 1990–1997 (1993).
  11. A. Arie and R. L. Byer, “The hyperfine structure of the 127I2 P(119) 35–0 transition,” Opt. Commun. 111, 253–258 (1994).
  12. M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995).
  13. J. Ye, L. Robertsson, S. Picard, L.-S. Ma, and J. L. Hall, “Absolute frequency atlas of molecular I2 lines at 532 nm,” IEEE Trans. Instrum. Meas. 48, 544–549 (1999).
  14. T. J. Quinn, “Practical realization of the definition of the metre (1997),” Metrologia 36, 211–244 (1999).
  15. P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, and S. Waltman, “Absolute frequency of the molecular iodine transition R(56)32–0 near 532 nm,” IEEE Trans. Instrum. Meas. 44, 151–154 (1995).
  16. P. Jungner, M. L. Eickhoff, S. D. Swartz, J. Ye, and J. L. Hall, “Stability and absolute frequency of molecular iodine transitions near 532 nm,” in Laser Frequency Stabilization and Noise Reduction, Y. Shevy, ed., Proc. SPIE 2378, 22–34 (1995).
  17. F.-L. Hong, J. Ishikawa, T. H. Yoon, L.-S. Ma, J. Ye, and J. L. Hall, “A portable I2-stabilized Nd:YAG laser for wavelength standards at 532 nm and 1064 nm,” in Recent Developments in Optical Gauge Block Metrology, N. Brown and J. E. Decker, eds., Proc. SPIE 3477, 2–10 (1998).
  18. F.-L. Hong, J. Ishikawa, J. Yoda, J. Ye, L.-S. Ma, and J. L. Hall, “Frequency comparison of 127I2-stabilized Nd:YAG lasers,” IEEE Trans. Instrum. Meas. 48, 532–536 (1999).
  19. M. S. Sorem, T. W. Hänsch, and A. L. Schawlow, “Nuclear quadrupole coupling in the 1Σg+ and 3Πou+ states of molecular iodine,” Chem. Phys. Lett. 17, 300–302 (1972).
  20. A. Yokozeki and J. S. Muenter, “Laser fluorescence state selected and detected molecular beam magnetic resonance in I2,” J. Chem. Phys. 72, 3796–3804 (1980).
  21. J.-P. Wallerand, F. du Burck, B. Mercier, A. N. Goncharov, M. Himbert, and Ch. J. Bordé, “Frequency measurements of hyperfine splittings in ground rovibronic states of I2 by stimulated resonant Raman spectroscopy,” Eur. Phys. J. D 6, 63–76 (1999).
  22. (Personal communication of Ch. J. Bordé with J. L. Hall, 1998.)
  23. T. W. Hänsch and B. Couillaud, “Laser frequency stabilizaion by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
  24. G. Camy, C. J. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturation beam,” Opt. Commun. 41, 325–330 (1982), especially Refs. 6 and 7 therein.
  25. J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett. 7, 537–539 (1982).
  26. L. S. Ma, J. H. Shirley, L. Hollberg, and J. L. Hall, “Modulation transfer spectroscopy for stabilizing lasers,” U.S. patent 4, 590, 597 (May 26, 1986).
  27. M. Kroll, “Hyperfine structure in the visible molecular-iodine absorption spectrum,” Phys. Rev. Lett. 23, 631–633 (1969).
  28. P. R. Bunker and G. R. Hanes, “Nuclear spin-spin coupling in the spectrum of I2 at 6328 Å,” Chem. Phys. Lett. 28, 377–379 (1974).
  29. L. A. Hackel, K. H. Casleton, S. G. Kukolich, and S. Ezekiel, “Observation of magnetic octupole and scalar spin-spin interaction in I2 using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975).
  30. See also B. M. Landsberg, “Nuclear hyperfine splittings in B–X electronic band system of 127I2,” Chem. Phys. Lett. 43, 102–103 (1976).
  31. S. Gerstenkorn and P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
  32. Ch. J. Bordé, G. Camy, N. and B. Decomps, “Measurement of the recoil shift of saturation resonances of 127I2 at 5145 Å: a test of accuracy for high-resolution spectroscopy,” Phys. Rev. A 20, 254–268 (1979).J. Bordeé and Ch. J. Bordé, “Intensities of hyperfine components in saturation spectroscopy,” J. Mol. Spectrosc. 78, 353–378 (1979).
  33. A. Razet and S. Picard, “A test of new empirical formulas for the prediction of hyperfine component frequencies in 127I2,” Metrologia 34, 181–186 (1997).
  34. V. Jaccarino, J. G. King, R. A. Satten, and H. H. Stroke, “Hyperfine structure of I127. Nuclear magnetic octupole moment,” Phys. Rev. 94, 1798–1616 (1954).
  35. R. M. Herman and S. Short, “New theoretical method for the accurate calculation of expectation values on functions of internuclear in 1Σ-state diatomic molecules,” J. Chem. Phys. 48, 1266–1272 (1968).
  36. F. H. de Leeuw and A. Dymanus, “Magnetic properties and molecular quadrupole moment of HF and HCl by molecular-beam electric-resonance spectroscopy,” J. Mol. Spectrosc. 48, 427–445 (1973).
  37. J. K. G. Watson, “The inversion of diatomic vibration-rotation expectation values,” J. Mol. Spectrosc. 74, 319–321 (1979).
  38. See also P. R. Bunker, “The breakdown of the Born–Oppenheimer approximation for a diatomic molecule: the dipole moment and nuclear quadrupole coupling constants,” J. Mol. Spectrosc. 45, 151–158 (1973).
  39. G. Gouédard, N. Billy, B. Girard, and J. Vigué, “Hyperfine structure measurements in the IF B–X system,” J. Phys. II 2, 813–825 (1992).
  40. Ch. Chardonnet, M. L. Palma, and Ch. J. Bordé, “Hyperfine interactions in the v3 band of osmium tetroxide: the elec-tric quadrupole interaction in 189OsO4,” J. Mol. Spectrosc. 170, 542–566 (1995).
  41. M. Wakasugi, T. Horiguchi, M. Koizumi, and Y. Yoshizawa, “Hyperfine structure near the 13–1 band head in the B–X transition of 127I2,” J. Opt. Soc. Am. B 5, 2298–2304 (1988).
  42. V. Špirko and J. Blabla, “Nuclear quadrupole coupling functions of the 1Σg+ and 3Π0u+ states of molecular iodine,” J. Mol. Spectrosc. 129, 59–71 (1988).
  43. H. Knöckel, S. Kremser, B. Bodermann, and E. Tiemann, “High precision measurement of hyperfine structures near 790 nm of I2,” Z. Phys. D 37, 43–48 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited