OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 4 — Apr. 1, 2001
  • pp: 409–418

Propagation of a solitonlike nonlinear pulse in average normal group-velocity dispersion and its unsuitability for high-speed, long-distance optical transmission

Masataka Nakazawa, Akio Sahara, and Hirokazu Kubota  »View Author Affiliations

JOSA B, Vol. 18, Issue 4, pp. 409-418 (2001)

View Full Text Article

Acrobat PDF (266 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We detail the propagation characteristics of a solitonlike single nonlinear pulse in an average normal group-velocity dispersion (GVD) region under two-step dispersion management. We compare the pulse characteristics with numerical results obtained by the variational method. Even when the dispersion swing is large, a steady-state solitonlike solution can be obtained only when the average effective dispersion becomes anomalous. We describe a pulse–pulse interaction based on a pair of nonlinear pulses and show that there is a large pulse interaction in the average normal GVD region. We show with a Q-mapping technique that such a nonlinear pulse train is unsuitable for high-speed, long-distance optical communication because of this strong pulse interaction.

© 2001 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.4510) Fiber optics and optical communications : Optical communications
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons

Masataka Nakazawa, Akio Sahara, and Hirokazu Kubota, "Propagation of a solitonlike nonlinear pulse in average normal group-velocity dispersion and its unsuitability for high-speed, long-distance optical transmission," J. Opt. Soc. Am. B 18, 409-418 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. H. Kubota and M. Nakazawa, “Partial soliton communication systems,” Opt. Commun. 87, 15–18 (1991).
  2. M. Nakazawa and H. Kubota, “Optical soliton communication in a positively and negatively dispersion-allocated optical fibre transmission line,” Electron. Lett. 31, 216–217 (1995).
  3. M. Nakazawa and H. Kubota, “Construction of a dispersion-allocated soliton transmission line using conventional dispersion-shifted nonsoliton fibers,” Jpn. J. Appl. Phys. 34, L681–L683 (1995): see also Ref. 4.
  4. M. Nakazawa and H. Kubota, “Analyses of dispersion-allocated bright and dark solitons,” Jpn. J. Appl. Phys. 34, L889–L891 (1995).
  5. M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura, “Marked increase in the power margin through the use of a dispersion-allocated soliton,” IEEE Photonics Technol. Lett. 8, 1088–1090 (1996).
  6. M. Nakazawa, Y. Kimura, K. Suzuki, H. Kubota, T. Komukai, E. Yamada, T. Sugawa, E. Yoshida, T. Yamamoto, T. Imai, A. Sahara, O. Yamauchi, and M. Umezawa, “Soliton transmission at 20 Gb/s over 2000 km in Tokyo metropolitan optical network,” Electron. Lett. 31, 1478–1479 (1995).
  7. A. Sahara, K. Suzuki, H. Kubota, T. Komukai, E. Yamada, T. Imai, K. Tamura, and M. Nakazawa, “Single channel 40 Gbit/s soliton transmission field experiment over 1000 km in Tokyo metropolitan optical loop network using dispersion compensation,” Electron. Lett. 34, 2154–2155 (1998).
  8. M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, “Reduction of Gordon–Haus timing jitter by periodic dispersion compensation in soliton transmission,” Electron. Lett. 31, 2027–2028 (1995).
  9. J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986).
  10. N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, “Enhanced power solitons in optical fibres with periodic dispersion management,” Electron. Lett. 32, 54–55 (1996).
  11. A. Sahara, H. Kubota, and M. Nakazawa, “Q-factor contour mapping for evaluation of optical transmission systems: soliton against NRZ against RZ pulses at zero group velocity dispersion,” Electron. Lett. 32, 915–916 (1996); see also Ref. 12.
  12. A. Sahara, H. Kubota, and M. Nakazawa, “Optimum fiber dispersion for two-step dispersion-allocated optical soliton, RZ at zero GVD and NRZ systems,” Photon. Technol. Lett. 9, 1179–1181 (1997).
  13. M. Nakazawa, E. Yamada, H. Kubota, T. Yamamoto, and A. Sahara, “Numerical and experimental comparison of soliton, RZ pulse and NRZ pulses under two step dispersion allocation,” Electron. Lett. 33, 1480–1482 (1997).
  14. G. M. Carter, J. M. Jacob, E. A. Golovchenko, and A. N. Pillipetskii, “Timing-jitter reduction for a dispersion-managed soliton system: experimental evidence,” Opt. Lett. 22, 513–515 (1997).
  15. J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, “Stable soliton-like propagation in dispersion managed systems with net anomalous, zero, and normal dispersion,” Electron. Lett. 33, 1726–1727 (1997).
  16. Y. Kodama, S. Kumar, and A. Maruta, “Chirped nonlinear pulse propagation in a dispersion-compensated system,” Opt. Lett. 22, 1689–1691 (1997).
  17. I. Gabitov, E. G. Shapiro, and S. K. Turitsyn, “Optical pulse dynamics in fiber links with dispersion compensation,” Opt. Commun. 136, 317–329 (1997).
  18. B. A. Malomed, “Pulse propagation in a nonlinear optical fiber with periodically modulated dispersion: variational approach,” Opt. Commun. 136, 313–319 (1997).
  19. T. George, “Extended path-average soliton regime in highly dispersive fibers,” Opt. Lett. 22, 679–681 (1997).
  20. M. Matsumoto, “Theory of stretched-pulse transmission in dispersion-managed fibers,” Opt. Lett. 22, 1238–1240 (1997).
  21. M. Matsumoto and H. A. Haus, “Stretched-pulse optical fiber communications,” IEEE Photonics Technol. Lett. 9, 785–787 (1997).
  22. T. Yu, E. A. Golovchenko, A. N. Pilipetskii, and C. R. Menyuk, “Dispersion-managed soliton interaction in optical fibers,” Opt. Lett. 22, 793–795 (1997).
  23. A. Hasegawa, Y. Kodama, and A. Maruta, “Recent progress in dispersion-managed soliton transmission technology,” Opt. Fiber Technol.: Mater., Devices Syst. 3, 197–213 (1997).
  24. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
  25. K. Tamura, E. P. Ippen, and H. A. Haus, “Pulse dynamics in stretched-pulse fiber lasers,” Appl. Phys. Lett. 67, 158–160 (1995).
  26. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).
  27. V. S. Grigoryan and C. R. Menyuk, “Dispersion-managed solitons at normal average dispersion,” Opt. Lett. 23, 609–611 (1998).
  28. S. K. Turitsyn and E. G. Shapiro, “Dispersion-managed solitons in optical amplifier transmission systems with zero average dispersion,” Opt. Lett. 23, 682–684 (1998).
  29. J. N. Kutz and S. G. Evangelides, Jr., “Dispersion-managed breathers with average normal dispersion,” Opt. Lett. 23, 685–687 (1998).
  30. A. Berntson, N. J. Doran, W. Forysiak, and J. H. B. Nijhof, “Power dependence of dispersion-managed solitons for anomalous, zero, and normal path-average dispersion,” Opt. Lett. 23, 900–902 (1998).
  31. Y. Chen and H. A. Haus, “Dispersion-managed solitons with net positive dispersion,” Opt. Lett. 23, 1013–1015 (1998).
  32. T. I. Lakoba, J. Yung, D. J. Kaup, and B. A. Malomed, “Conditions for stationary pulse propagation in the strong dispersion management regime,” Opt. Commun. 149, 366–375 (1998).
  33. T. I. Lakoba and D. J. Kaup, “Hermite–Gaussian expansion for pulse propagation in strongly dispersion managed fibers,” Phys. Rev. E 58, 6728–6741 (1998).
  34. A. Hasegawa, ed. New Trends in Optical Transmission Systems (Kluwer Academic, Dordrecht, The Netherlands, 1998).
  35. S. K. Turitsyn, T. Schafer, and V. K. Mezentsev, “Self-similar core and oscillatory tails of a path-average chirped dispersion-managed optical pulse,” Opt. Lett. 23, 1351–1353 (1998).
  36. H. A. Haus and Y. Chen, “Dispersion-managed solitons as nonlinear Bloch waves,” J. Opt. Soc. Am. B 16, 889–894 (1999).
  37. D. Anderson, “Variational approach to nonlinear pulse propagation in optical fibers,” Phys. Rev. A 6, 3135–3137 (1983).
  38. N. S. Bergano, F. W. Kerfoot, and C. R. Davidson, “Margin measurements in optical amplifier systems,” IEEE Photonics Technol. Lett. 5, 304–306 (1993).
  39. E. Yamada, H. Kubota, T. Yamamoto, A. Sahara, and M. Nakazawa, “10 Gbit/s, 10600 km dispersion-allocated soliton transmission using conventional 1.3 μm single-mode fibers,” Electron. Lett. 33, 602–603 (1997).
  40. J. M. Jacob and G. M. Carter, “Error-free transmission of dispersion-managed solitons at 10 Gbit/s over 24,500 km without frequency sliding,” Electron. Lett. 33, 1128–1129 (1997).
  41. G. M. Carter and J. M. Jacob, “Dynamics of solitons in filtered dispersion-managed systems,” IEEE Photonics Technol. Lett. 10, 546–548 (1998).
  42. G. M. Carter, R.-M. Mu, V. Grigoryan, C. R. Menyuk, P. Sinha, T. F. Carruthers, M. L. Dennis, and I. N. Duling III, “Transmission of dispersion-managed solitons at 20 Gbit/s over 20,000 km,” Electron. Lett. 35, 233–234 (1999).
  43. F. M. Knox, W. Forysiak, and N. J. Doran, “10-Gbit/s soliton communication systems over standard fiber at 1.55 μm and the use of dispersion compensation,” J. Lightwave Technol. 13, 1955–1962 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited