OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 4 — Apr. 1, 2001
  • pp: 432–443

Nonlinear polarization dynamics of counterpropagating waves in an isotropic optical fiber: theory and experiments

S. Pitois, G. Millot, and S. Wabnitz  »View Author Affiliations


JOSA B, Vol. 18, Issue 4, pp. 432-443 (2001)
http://dx.doi.org/10.1364/JOSAB.18.000432


View Full Text Article

Acrobat PDF (340 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The nonlinear interaction between two intense counterpropagating laser beams in an isotropic optical fiber may lead to spatiotemporal polarization instabilities of both waves. Experiments with various mutual polarization arrangements and different powers of the two counterpropagating input beams showed that nonlinear birefringence may lead to significant polarization cross switching of both beams. In the case of two counterrotating circular input waves, the cross-polarization interaction of the beams led to the generation of a polarization kink or domain wall soliton. This soliton is formed by a superposition of counterpropagating waves that represent switching of the state of polarization of light between two domains where both waves are circularly polarized and corotating. The experimental observations are found to be in good agreement with the theoretical predictions.

© 2001 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.3100) Nonlinear optics : Instabilities and chaos
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

Citation
S. Pitois, G. Millot, and S. Wabnitz, "Nonlinear polarization dynamics of counterpropagating waves in an isotropic optical fiber: theory and experiments," J. Opt. Soc. Am. B 18, 432-443 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-4-432


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. M. Gibbs, F. A. Hopf, D. L. Kaplan, and R. L. Shoemaker, “Observation of chaos in optical bistability,” Phys. Rev. Lett. 46, 474–477 (1981).
  2. D. M. Pepper and A. Yariv, “Optical phase conjugation using three-wave and four-wave mixing via elastic photon scattering in transparent media,” in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), pp. 23–27.
  3. W. J. Firth and C. Paré, “Transverse modulational instabilities for counterpropagating beams in Kerr media,” Opt. Lett. 13, 1096–1098 (1988).
  4. W. J. Firth, A. Fitzgerald, and C. Paré, “Transverse instabilities due to counterpropagation in Kerr media,” J. Opt. Soc. Am. B 7, 1087–1097 (1990).
  5. C. T. Law and A. E. Kaplan, “Dispersion-related multimode instabilities and self-sustained oscillations in nonlinear counterpropagating waves,” Opt. Lett. 14, 734–736 (1989).
  6. C. T. Law and A. E. Kaplan, “Instabilities and amplification of counterpropagating waves in a Kerr nonlinear medium,” J. Opt. Soc. Am. B 8, 58–67 (1991).
  7. Y. Silberberg and I. Bar-Joseph, “Instabilities, self-oscillation, and chaos in a simple nonlinear optical interaction,” Phys. Rev. Lett. 48, 1541–1543 (1982).
  8. Y. Silberberg and I. Bar-Joseph, “Optical instabilities in a nonlinear Kerr medium,” J. Opt. Soc. Am. B 1, 662–670 (1984).
  9. A. E. Kaplan and C. T. Law, “Isolas in four-wave mixing optical bistability,” IEEE J. Quantum Electron. QE-21, 1529–1537 (1985).
  10. D. J. Gauthier, M. S. Malcuit, A. L. Gaeta, and R. B. Boyd, “Polarization bistability of counterpropagating laser beams,” Phys. Rev. Lett. 64, 1721–1724 (1990).
  11. G. Gregori and S. Wabnitz, “New exact solutions and bifurcations in the spatial distribution of polarization in third-order nonlinear optical interactions,” Phys. Rev. Lett. 56, 600–603 (1986).
  12. S. Wabnitz and G. Gregori, “Symmetry-breaking and intrinsic polarization instability in degenerate four-wave mixing,” Opt. Commun. 59, 72–76 (1986).
  13. A. L. Gaeta, R. W. Boyd, J. R. Ackerhalt, and P. W. Milonni, “Instabilities and chaos in the polarization of counterpropagating light fields,” Phys. Rev. Lett. 58, 2432–2435 (1987).
  14. M. V. Tratnik and J. E. Sipe, “Nonlinear polarization dynamics. II. Counterpropagating-beam equations: new simple solutions and the possibilities for chaos,” Phys. Rev. A 35, 2976–2988 (1987).
  15. J. Yumoto and K. Otsuka, “Frustrated optical instability: self-induced periodic and chaotic spatial distribution of polarization in nonlinear optical media,” Phys. Rev. Lett. 54, 1806–1809 (1985).
  16. S. Trillo and S. Wabnitz, “Intermittent spatial chaos in the polarization of counterpropagating beams in a birefringent optical fiber,” Phys. Rev. A 36, 3881–3884 (1987).
  17. M. V. Tratnik and J. E. Sipe, “Nonlinear polarization dynamics. III. Spatial polarization chaos in counterpropagating beams,” Phys. Rev. A 36, 4817–4822 (1987).
  18. D. J. Gauthier, M. S. Malcuit, and R. W. Boyd, “Polarization bistability of counterpropagating laser beams in sodium vapor,” Phys. Rev. Lett. 61, 1827–1830 (1988).
  19. A. E. Kaplan, “Light-induced nonreciprocity, field invariants, and nonlinear eigenpolarizations,” Opt. Lett. 8, 560–562 (1983).
  20. V. E. Zakharov and A. V. Mikhailov, “Polarization domains in nonlinear optics,” Pis’ma Zh. Eksp. Teor. Fiz. 45, 279–282 (1987) [ JETP Lett. 45, 349–352 (1987)].
  21. A. V. Mikhailov and S. Wabnitz, “Polarization dynamics of counterpropagating beams in optical fibers,” Opt. Lett. 15, 1055–1057 (1990).
  22. M. V. Tratnik and J. E. Sipe, “Polarization solitons,” Phys. Rev. Lett. 58, 1104–1107 (1987).
  23. D. David, D. D. Holm, and M. V. Tratnik, “Hamiltonian chaos in nonlinear optical polarization dynamics,” Phys. Rep. 187, 281–367 (1990).
  24. S. Wabnitz and B. Daino, “Polarization domains and instabilities in nonlinear optical fibers,” Phys. Lett. A 182, 289–293 (1993).
  25. S. Pitois, G. Millot, and S. Wabnitz, “Polarization domain wall solitons with counterpropagating laser beams,” Phys. Rev. Lett. 81, 1409–1412 (1998).
  26. L. D. Landau and E. M. Lifshitz, “On the theory of the dispersion of magnetic permeability in ferromagnetic bodies,” Phys. Z. Sowjet Union 8, 153–162 (1935).
  27. A. V. Mikhailov, “Integrable magnetic models,” in Solitons, S. E. Trullinger, V. E. Zakharov, and V. L. Pokrovsky, eds. (Elsevier, Amsterdam, 1986) Chap. 13, pp. 623–690.
  28. A. M. Kosevich, “Dynamical and topological solitons in ferromagnets and antiferromagnets,” in Solitons, S. E. Trullinger, V. E. Zakharov, and V. L. Pokrovsky, eds. (Elsevier, Amsterdam, 1986), Chap. 11, pp. 555–603.
  29. W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
  30. A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic optical media,” Phys. Lett. A 141, 37–42 (1989).
  31. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
  32. A. L. Gaeta and R. W. Boyd, “Transverse instabilities in the polarizations and intensities of counterpropagating light waves,” Phys. Rev. A 48, 1610–1624 (1993).
  33. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, New York, 1995).
  34. D. D. Tskhakaya, “Integrability conditions for equations that describe the interaction of colliding wave packets of different polarizations in nonlinear optics,” Theor. Math. Phys. (USSR) 81, 1119–1122 (1989) [ Teor. Mat. Fiz. 81, 154–157 (1989)].
  35. A. P. Veselov, “On integrability conditions for the Euler equations on SO(4),” Dokl. Akad. Nauk SSSR 270, 1298 (1983) [ Sov. Math. Dokl. 27, 740–742 (1983)].
  36. A. L. Berkhoer and V. E. Zakharov, “Self excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP 31, 486–490 (1970).
  37. P. Kockaert, M. Haelterman, S. Pitois, and G. Millot, “Isotropic polarization modulational instability and domain walls in spun fibers,” Appl. Phys. Lett. 75, 2873–2875 (1999).
  38. A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, “Birefringence and polarization mode-dispersion in spun single-mode fibers,” Appl. Opt. 20, 2962–2968 (1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited