OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 4 — Apr. 1, 2001
  • pp: 485–491

Modeling of photorefractive two-step gated recording by long-life-time intermediate levels

Thomas Nikolajsen, Per Michael Johansen, Boris I. Sturman, and Evgeni V. Podivilov  »View Author Affiliations


JOSA B, Vol. 18, Issue 4, pp. 485-491 (2001)
http://dx.doi.org/10.1364/JOSAB.18.000485


View Full Text Article

Acrobat PDF (170 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Gated recording based on two-step excitation with metastable shallow traps is analyzed theoretically. A two-center model, including the tail of the conduction band into the bandgap, is suggested. The tail provides a way to model efficiently excitation from deep to shallow traps and long recombination times back into deep traps. The results are compared with experimental results performed with La3Ga5SiO14, and good agreement is found. Further, the limiting material parameters determining the material sensitivity are identified.

© 2001 Optical Society of America

OCIS Codes
(160.5320) Materials : Photorefractive materials
(190.5330) Nonlinear optics : Photorefractive optics
(210.0210) Optical data storage : Optical data storage

Citation
Thomas Nikolajsen, Per Michael Johansen, Boris I. Sturman, and Evgeni V. Podivilov, "Modeling of photorefractive two-step gated recording by long-life-time intermediate levels," J. Opt. Soc. Am. B 18, 485-491 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-4-485


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
  2. F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
  3. D. von der Linde, A. Glass, and K. Rodgers, “Optical storage using refractive index changes induced by two-step excitation,” J. Appl. Phys. 47, 217–220 (1976).
  4. L. Paraschis, M. Bashaw, A. Liu, and L. Hesselink, “Resonant two-photon processes for nonvolatile holography in photorefractive crystals under continuous-wave illumination,” J. Opt. Soc. Am. B 14, 2670–2680 (1997).
  5. Y. Ming, E. Krätzig, and R. Orlowski, “Photorefractive effects in LiNbO3:Cr induced by two-step excitation,” Phys. Status Solidi 92, 221–229 (1987).
  6. H. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Commun. 49, 843–847 (1984).
  7. Y. Bai, R. Neurgaonkar, and R. Kachru, “Resonant two-photon photorefractive grating in praseodymium-doped strontium barium niobate with cw lasers,” Opt. Lett. 21, 567–569 (1996).
  8. K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
  9. F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
  10. J. Imbrock, D. Kip, and E. Krätzig, “Nonvolatile holographic storage in iron-doped lithium tantalate with continuous-wave laser light,” Opt. Lett. 24, 1302–1304 (1999).
  11. J. Li, X. H. Li, F. X. Wu, Y. Zhu, X. Wu, and H. F. Wang, “Photorefractive parameters and light-induced absorption in BaTiO3,” Appl. Phys. A 61, 553–557 (1995).
  12. O. V. Kobozev, S. M. Shandarov, A. A. Kamshilin, and V. V. Prokofiev, “Light-induced absorption in a Bi12TiO20 crystal,” J. Opt. A: Pure Appl. Opt. 1, 442–447 (1999).
  13. S. Orlov, M. Segev, A. Yariv, and R. R. Neurgaonkar, “Light-induced absorption in photorefractive strontium barium niobate,” Opt. Lett. 19, 1293–1295 (1994).
  14. A. Liu, M. Lee, and L. Hesselink, “Light-induced absorption of cerium-doped lead barium niobate crystals,” Opt. Lett. 23, 1618–1620 (1998).
  15. O. F. Schirmer, O. Thiemann, and M. Wohlecke, “Defects in LiNbO3. I. Experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
  16. Y. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
  17. D. Lande, S. Orlov, A. Akella, L. Hesselink, and R. Neugaonkar, “Digital holographic storage systems incorporating optical fixing,” Opt. Lett. 22, 1722–1724 (1997).
  18. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer-Verlag, Berlin, 1984).
  19. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  20. T. Nikolajsen, P. M. Johansen, X. Yue, D. Kip, and E. Krätzig, “Two-step two-color recording in a photorefractive praseodymium doped La3Ga5SiO14 crystal,” Appl. Phys. Lett. 74, 4037–4039 (1999).
  21. L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neugaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited