OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 4 — Apr. 1, 2001
  • pp: 540–546

Propagation of spatial surface waves along the interface of photorefractive crystals

Rafael Torres-Cordoba, J. J. Sánchez Mondragón, and V. A. Vysloukh  »View Author Affiliations

JOSA B, Vol. 18, Issue 4, pp. 540-546 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (202 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The propagation of a square beam and a Gaussian beam along the interface of two photorefractive crystals is studied theoretically. Both of the crystals have a diffusion nonlinearity of the gradient type (with a sign opposite that of the diffusion nonlinearity), which is able to balance the self-bending of the beams and hence to produce a photorefractive surface wave. A comparison of this wave with the symmetrical and antisymmetrical surface waves propagating along the photorefractive crystals’ interface is also given.

© 2001 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.6800) General : Theoretical physics
(130.2790) Integrated optics : Guided waves
(160.5320) Materials : Photorefractive materials
(190.0190) Nonlinear optics : Nonlinear optics
(240.6670) Optics at surfaces : Surface photochemistry

Rafael Torres-Cordoba, J. J. Sánchez Mondragón, and V. A. Vysloukh, "Propagation of spatial surface waves along the interface of photorefractive crystals," J. Opt. Soc. Am. B 18, 540-546 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Duree, J. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993). [CrossRef] [PubMed]
  2. M. D. Iturbe Castillo, P. A. Marquez Aguilar, J. J. Sánchez Mondragón, S. Stepanov, and V. Vysloukh, “Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of non-linearity,” Appl. Phys. Lett. 64, 408–410 (1994). [CrossRef]
  3. M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992). [CrossRef] [PubMed]
  4. B. Crosignani, M. Segev, D. Engin, P. Di Porto, A. Yariv, and G. Salamo, “Self-trapping of optical beams in photorefractive media,” J. Opt. Soc. Am. B 10, 446–452 (1993). [CrossRef]
  5. G. S. Garcia Quirino, J. J. Sánchez Mondragón, and S. Stepanov, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A 51, 1571–1577 (1995). [CrossRef] [PubMed]
  6. G. S. Garcia Quirino, J. J. Sánchez Mondragón, S. Stepanov, and V. A. Vysloukh, “Guided modes in a dielectric slab with diffusion-type photorefractive nonlinearity,” J. Opt. Soc. Am. B 13, 2530–2535 (1996). [CrossRef]
  7. M. Cronin-Golomb, “Photorefractive surface waves,” Opt. Lett. 20, 2075–2077 (1995). [CrossRef] [PubMed]
  8. R. Torres-Cordoba, J. J. Sánchez-Mondragón, and V. A. Vysloukh, “Beam propagation and surface wave formation along the interface of photorefractive media,” submitted to Phys. Rev. E.
  9. A. V. Khomenko, E. Nippolainen, A. A. Kamshilin, A. Zuñiga Segundo, and T. Jaaskelainen, “Leaky photorefractive surface waves in Bi12TiO20 and Bi12SiO20 crystals,” Opt. Commun. 150, 175–179 (1998). [CrossRef]
  10. A. V. Khomenko, A. Garcia-Weidner, and A. A. Kamshilin, “Amplification of optical signals in Bi12TiO20 crystal by photorefractive surface waves,” Opt. Lett. 21, 1014–1016 (1996). [CrossRef] [PubMed]
  11. J. D. Jackson, “Plane electromagnetic waves and wave propagation,” in Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), Chap. 7, Sec. 9, pp. 303–306.
  12. J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, Reading, Mass., 1975), Chap. 2, Sec. 5.
  13. B. M. Abramowitz and I. A. Segun, eds., Handbook of Mathematical Functions (Dover, New York, 1968), p. 299, Eq. (7.1.2a).
  14. H. Kogelnik, “Waves in thick holograms,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited