OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 5 — May. 1, 2001
  • pp: 584–601

Two-center holographic recording

Ali Adibi, Karsten Buse, and Demetri Psaltis  »View Author Affiliations


JOSA B, Vol. 18, Issue 5, pp. 584-601 (2001)
http://dx.doi.org/10.1364/JOSAB.18.000584


View Full Text Article

Enhanced HTML    Acrobat PDF (466 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a two-center holographic recording method for the storage of persistent holograms in doubly doped lithium niobate crystals. We use a two-center model, and we show that our experimental observations can be explained by the model. We describe experimental methods for finding the unknown material parameters of LiNbO3:Fe:Mn crystals for the two-center model, and we discuss the optimization of two-center recording.

© 2001 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.2900) Holography : Optical storage materials
(090.7330) Holography : Volume gratings

Citation
Ali Adibi, Karsten Buse, and Demetri Psaltis, "Two-center holographic recording," J. Opt. Soc. Am. B 18, 584-601 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-5-584


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993). [CrossRef] [PubMed]
  2. I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, and J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375–2379 (1996). [CrossRef] [PubMed]
  3. J. Ashley, M.-P. Bernal, M. Blaum, G. W. Burr, H. Coufal, R. K. Grygier, H. Günter, J. A. Hoffnagle, C. M. Jefferson, R. M. MacFarlane, B. Marcus, R. M. Shelby, G. T. Sincerbox, and G. Wittmann, “Holographic storage promises high data density,” Laser Focus World, April 1996, pp. 81–93.
  4. J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971). [CrossRef]
  5. F. Micheron and G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972). [CrossRef]
  6. D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974). [CrossRef]
  7. R. A. Rupp, H. C. Külich, U. Schürk, and E. Krätzig, “Diffraction by difference holograms in electrooptic crystals,” Ferroelectrics 8, 25–30 (1987). [CrossRef]
  8. H. C. Külich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun. 64, 407–411 (1987). [CrossRef]
  9. H. Vormann and E. Krätzig, “Two step excitation in LiTaO3:Fe for optical data storage,” Solid State Commun. 49, 843–847 (1984). [CrossRef]
  10. K. Buse, F. Jermann, and E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993). [CrossRef]
  11. K. Buse, F. Jermann, and E. Krätzig, “Infrared holographic recording in LiNbO3:Cu,” Appl. Phys. A 58, 191–195 (1994). [CrossRef]
  12. K. Buse, F. Jermann, and E. Krätzig, “Infrared holographic recording in LiNbO3:Fe and LiNbO3:Cu,” Opt. Mater. 4, 237–240 (1995). [CrossRef]
  13. N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992). [CrossRef]
  14. N. Zotov, H. Boysen, J. Schneider, and F. Frey, “Application of combined neutron and x-ray powder diffraction refinements to the structure of congruent lithium niobate,” Mater. Sci. Forum 166–169, 631–636 (1994). [CrossRef]
  15. Y. S. Bai, R. R. Neurgaonkar, and R. Kachru, “Resonant two-photon photorefractive grating in praeseodymium-doped strontium barium niobate with cw lasers,” Opt. Lett. 21, 567–569 (1996). [CrossRef] [PubMed]
  16. Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997). [CrossRef]
  17. H. Guenther, G. Wittmann, R. M. Macfarlane, and R. R. Neurgaonkar, “Intensity dependence and white-light gating of two-color photorefractive gratings in LiNbO3,” Opt. Lett. 22, 1305–1307 (1997). [CrossRef]
  18. H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998). [CrossRef]
  19. L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neugaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998). [CrossRef] [PubMed]
  20. K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998). [CrossRef]
  21. A. Adibi, K. Buse, and D. Psaltis, “Hologram multiplexing using two-step recording,” in Advanced Optical Memorials and Interfaces to Computer Storage, Z. U. Hasan and P. A. Mitkas, ed., Proc. SPIE 3468, 20–29 (1998). [CrossRef]
  22. D. L. Staebler and W. Phillips, “Hologram storage in photochromic LiNbO3,” Appl. Phys. Lett. 24, 268–270 (1974). [CrossRef]
  23. O. Thiemann and O. F. Schirmer, “Energy levels of several 3d impurities and EPR of Ti3+ in LiNbO3,” in Electro-Optic and Magneto-Optic Materials, J.-P. Huignard, ed., Proc. SPIE 1018, 18–22 (1988). [CrossRef]
  24. W. Phillips, J. J. Amodei, and D. L. Staebler, “Optical and holographic storage properties of transition metal doped lithium niobate,” RCA Rev. 33, 94–109 (1972).
  25. F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993). [CrossRef]
  26. R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42, 2219–2230 (1971). [CrossRef]
  27. A. Mansingh and A. Dhar, “The ac conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985). [CrossRef]
  28. K. Onuki, N. Uchida, and T. Saku, “Interferometric method for measuring electro-optic coefficients in crystals,” J. Opt. Soc. Am. 62, 1030–1032 (1972). [CrossRef]
  29. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984). [CrossRef]
  30. Y. Ohmori, M. Yamaguchi, K. Yoshino, and Y. Inuishi, “Electron hall mobility in reduced LiNbO3,” Jpn. J. Appl. Phys. 15, 2263–2264 (1976). [CrossRef]
  31. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers inLiNbO3, studied by optical, Mössbauer, and EPR methods,” Appl. Phys. (N.Y.) 12, 355–368 (1977). [CrossRef]
  32. E. Krätzig and H. Kurz, “Photo-induced currents and voltages in LiNbO3,” Ferroelectrics 13, 295–296 (1976). [CrossRef]
  33. E. Krätzig and H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977). [CrossRef]
  34. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  35. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996). [CrossRef] [PubMed]
  36. R. Orlowski and E. Krätzig, “Holographic method for the determination of photoinduced electron and hole transport in electro-optic crystals,” Solid State Commun. 27, 1351–1354 (1978). [CrossRef]
  37. A. Adibi, K. Buse, and D. Psaltis, “Effect of annealing in two-center holographic recording,” Appl. Phys. Lett. 74, 3767–3769 (1999). [CrossRef]
  38. A. Adibi, K. Buse, and D. Psaltis, “Multiplexing holograms in LiNbO3:Fe:Mn crystals,” Opt. Lett. 24, 652–654 (1999). [CrossRef]
  39. A. Adibi, K. Buse, and D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited