Simple empirical analytical approximation to the Voigt profile
JOSA B, Vol. 18, Issue 5, pp. 666-672 (2001)
http://dx.doi.org/10.1364/JOSAB.18.000666
Enhanced HTML Acrobat PDF (164 KB)
Abstract
A simple empirical analytical approximation to the Voigt profile is proposed as a weighted sum of Lorentzian and Gaussian functions. It is prevalent in the analysis of complicated experimental spectra such as that with multibroadening mechanisms and congested or overlapped lines. The maximum errors of width, area, and peak relative to those from direct convolution of the Voigt profile are 0.01%, 0.2%, and 0.55%, respectively. The relative width error of the present approximation is smaller and its convergence of absolute strength calculation, i.e. the area under the profile, faster than for the other methods that we considered, such as Gautsch’s algorithm, which is developed by introduction of a complex probability function.
© 2001 Optical Society of America
OCIS Codes
(300.0300) Spectroscopy : Spectroscopy
Citation
Yuyan Liu, Jieli Lin, Guangming Huang, Yuanqing Guo, and Chuanxi Duan, "Simple empirical analytical approximation to the Voigt profile," J. Opt. Soc. Am. B 18, 666-672 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-5-666
Sort: Year | Journal | Reset
References
- D. W. Posener, “The shape of spectral lines: tables of the Voigt profile a/π ∫ e^{−y2}dy/a^{2} + (x−y)^{2},” Aust. J. Phys. 12, 184–196 (1959). [CrossRef]
- D. G. Hummer, “The Voigt function—an eight-significant-figure table and generating procedure,” Mem. R. Astron. Soc. 70, 1–32 (1965).
- J. F. Kielkopf, “New approximation to the Voigt function with applications to spectral-line,” J. Opt. Soc. Am. 63, 987–995 (1973). [CrossRef]
- E. E. Whiting, “An empirical approximation to the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 8, 1379–1384 (1968). [CrossRef]
- C. Young, “Note: Calculation of the absorption coefficient for lines with combined Doppler and Lorentz broadening,” J. Quant. Spectrosc. Radiat. Transfer 5, 549–552 (1965). [CrossRef]
- B. H. Armstrong, “Spectrum line profiles: the Voigt function,” J. Quant. Spectrosc. Radiat. Transfer 7, 61–88 (1967). [CrossRef]
- W. Gautschi, “Algorithm 363, complex error function [S15],” Commun. ACM 12, 635 (1969). [CrossRef]
- S. R. Drayson, “Note: Rapid computation of the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 16, 611–614 (1976). [CrossRef]
- A. K. Hui, B. H. Armstrong, and A. A. Wray, “Rapid computation of the Voigt and complex error functions,” J. Quant. Spectrosc. Radiat. Transfer 19, 509–516 (1978). [CrossRef]
- J. H. Pierluissi and P. C. Vanderwood, “Note: Fast calculation algorithm for the Voigt profile,” J. Quant. Spectrosc. Radiat. Transfer 18, 555–558 (1977). [CrossRef]
- J. Humlicek, “An efficient method for evaluation of the complex probability function: the Voigt function and its derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309–313 (1979). [CrossRef]
- J. Humlicek, “Optimized computation of the Voigt and complex probability functions,” J. Quant. Spectrosc. Radiat. Transfer 27, 437–444 (1982). [CrossRef]
- A. H. Karp, “Efficient computation of spectral line shapes,” J. Quant. Spectrosc. Radiat. Transfer 20, 379–384 (1978). [CrossRef]
- W. G. Mankin, “Fourier transform method for calculating the transmittance of inhomogeneous atmospheres,” Appl. Opt. 18, 3426–3433 (1979). [CrossRef] [PubMed]
- S. S. Penner and R. W. Kavanagh, “Radiation from isolated spectral lines with combined Doppler and Lorentz broadening,” J. Opt. Soc. Am. 43, 385–388 (1953). [CrossRef]
- C. Chiarella and A. Reichel, “On the evaluation of Voigt spectral line functions,” Mon. Not. R. Astron. Soc. 134, 83–86 (1966).
- F. Matta and A. Reichel, “Uniform computation of the error function and other related functions,” Math. Comput. 25, 339–344 (1971). [CrossRef]
- V. N. Faddeyeva and N. M. Terentev, Tables of Values of the Function w(z) for Complex Argument (Pergamon, Oxford, 1961).
- F. Schreier, “The Voigt and complex error functions: a comparison of computational methods,” J. Quant. Spectrosc. Radiat. Transfer 48, 743–762 (1992). [CrossRef]
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965), p. 297.
- J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977). [CrossRef]
- Z. A. Liu, Y. Y. Liu, F. Y. Li, J. R. Li, B. Z. Gong, and Y. Q. Chen, “Measurement of pressure broadening coefficients of NO by intracavity laser magnetic resonance with a CO laser,” Chem. Phys. Lett. 183, 340–344 (1991). [CrossRef]
- Y. Q. Chen, Y. Y. Liu, F. Y. Li, J. R. Li, and K. L. He, “Determination of pressure broadening coefficients of NO_{2} by laser magnetic resonance,” Chin. Phys. Lett. 5, 277–280 (1988). [CrossRef]
- J. T. Twitty, P. L. Rarig, and R. E. Thompson, “Note: A comparison of fast codes for the evaluation of the Voigt profile function,” J. Quant. Spectrosc. Radiat. Transfer 24, 529–532 (1980). [CrossRef]
- C.-H. Xu, Introduction to Computational Methods (Higher Education Press, Beijing, China, 1995), pp. 88–105.
- A. Klim, “A comparison of methods for the calculation of Voigt profiles,” J. Quant. Spectrosc. Radiat. Transfer 26, 537–545 (1981). [CrossRef]
- T. K. Fang and T. N. Chang, “Determination of profile parameters of a Fano resonance without an ultrahigh-energy resolution,” Phys. Rev. A 57, 4407–4412 (1998). [CrossRef]
- U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961). [CrossRef]
- Y. Y. Liu, J. L. Lin, and Y. Q. Guo, “Measurement of the pressure self-broadening coefficient of NO by saturation spectroscopy of LMR,” Can. J. Phys. 78, 985–995 (2000). [CrossRef]
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.