OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 5 — May. 1, 2001
  • pp: 679–691

Absolute molecular optical Kerr effect spectroscopy of dilute organic solutions and neat organic liquids

Steven R. Vigil and Mark G. Kuzyk  »View Author Affiliations


JOSA B, Vol. 18, Issue 5, pp. 679-691 (2001)
http://dx.doi.org/10.1364/JOSAB.18.000679


View Full Text Article

Enhanced HTML    Acrobat PDF (409 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the results of pump–probe optical Kerr effect (OKE) experiments performed on neat solutions of carbon tetrachloride, nitrobenzene, methyl methacrylate monomer, binary solutions of the squaraine dye indole squarylium, and the phthalocyanine dye silicon phthalocyanine-monomethacrylate, respectively, in carbon tetrachloride, and solid solutions of indole squarylium and phthalocyanine-monomethacrylate in poly(methyl methacrylate). Dispersion measurements of the dye solutions were performed in the visible one-photon resonant region of the dyes defined by their linear-absorption spectra. The dyes’ third-order molecular susceptibility response γxxxx(-ω2;ω1,-ω1, ω2) in this spectral region is markedly different, with R{γISQ}>0 and R{γSiPc}<0. Analysis of the dyes’ OKE response requires the inclusion of high-lying two-photon states and suggests that a purely electronic mechanism dominates their OKE response. The results are used to calculate the dyes’ off-resonant third-order molecular susceptibilities, which are well within the limits predicted by the Thomas–Reiche–Kuhn sum rule [KuzykM. G., Opt. Lett. 25, 1183–1185 (2000)].

© 2001 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(300.6290) Spectroscopy : Spectroscopy, four-wave mixing
(300.6420) Spectroscopy : Spectroscopy, nonlinear

Citation
Steven R. Vigil and Mark G. Kuzyk, "Absolute molecular optical Kerr effect spectroscopy of dilute organic solutions and neat organic liquids," J. Opt. Soc. Am. B 18, 679-691 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-5-679


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. L. Sklar, “Theory of color of organic compounds,” J. Chem. Phys. 5, 669–681 (1937). [CrossRef]
  2. C. Poga, M. Kuzyk, and C. Dirk, “Quadratic electroabsorption studies of third-order susceptibility mechanisms in dye-doped polymers,” J. Opt. Soc. Am. B 11, 80–91 (1994). [CrossRef]
  3. C. Poga, T. Brown, M. Kuzyk, and C. W. Dirk, “Characterization of the excited states of a squaraine molecule with quadratic electroabsorption spectroscopy,” J. Opt. Soc. Am. B 12, 531–543 (1995). [CrossRef]
  4. K. S. Mathis, M. G. Kuzyk, C. W. Dirk, A. Tan, S. Martinez, and G. Gampos, “Mechanisms of the nonlinear optical properties of squaraine dyes in poly(methyl methacrylate) polymers,” J. Opt. Soc. Am. B 15, 871–883 (1998). [CrossRef]
  5. G. Mayer and F. Gires, “Action d’une onde lumineuse intense sur l’indice de refraction des liquides,” C. R. Acad. Sci. 258, 2039–2042 (1964).
  6. M. A. Duguay and J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969). [CrossRef]
  7. S. R. Vigil, “Nonlinear optical studies of organic liquids and polymer optical fibers,” Ph.D. dissertation (Washington State University, Pullman, Wash., 2000).
  8. M. G. Kuzyk, R. A. Norwood, J. W. Wu, and A. F. Garito, “Frequency dependence of the optical Kerr effect and third-order electronic nonlinear-optical processes of organic liquids,” J. Opt. Soc. Am. B 6, 154–164 (1989). [CrossRef]
  9. K. Sala and M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12, 1036–1047 (1975). [CrossRef]
  10. G. K. L. Wong and Y. R. Shen, “Study of pretransitional behavior of laser-field-induced molecular alignment in isotropic nematic substances,” Phys. Rev. A 10, 1277–1284 (1974). [CrossRef]
  11. B. I. Greene and R. C. Farrow, “Direct measurement of a subpicosecond birefringent response in CS2,” J. Chem. Phys. 77, 4779–4780 (1982). [CrossRef]
  12. M. G. Kuzyk and C. W. Dirk, “Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility,” Phys. Rev. A 41, 5098–5109 (1990). [CrossRef] [PubMed]
  13. B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20, 513–526 (1971). [CrossRef]
  14. N. N. Bogoliubov and J. A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations (Nauka, Moscow, 1948).
  15. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics, Vol. 9 of Cambridge Studies in Modern Optics (Cambridge University Press, Cambridge, UK, 1990).
  16. J. Y. Zhang, J. Y. Huang, Y. R. Shen, and C. Chen, “Optical parametric generation and amplification in barium borate and lithium triborate crystals,” J. Opt. Soc. Am. B 10, 1758–1764 (1993). [CrossRef]
  17. B. Schroder, “Optical parametric amplification from quantum noise,” Opt. Quantum Electron. 15, 57–63 (1983). [CrossRef]
  18. J. Y. Huang, J. Y. Zhang, Y. R. Shen, C. Chen, and B. Wu, “High-power, widely tunable, picosecond coherent source from optical parametric amplification in barium borate,” Appl. Phys. Lett. 57, 1961–1963 (1990). [CrossRef]
  19. J. Y. Zhang, J. Y. Huang, Y. R. Shen, C. Chen, and B. Wu, “Picosecond optical parametric amplification in lithium triborate,” Appl. Phys. Lett. 58, 213–215 (1991). [CrossRef]
  20. P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979). [CrossRef]
  21. K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi, “Femtosecond optical Kerr dynamics of thiophene in carbon tetrachloride solution,” Chem. Phys. Lett. 249, 329–334 (1996). [CrossRef]
  22. S. Guha, C. C. Frazier, P. L. Porter, K. Kang, and S. E. Finberg, “Measurement of the third-order hyperpolarizability of platinum poly-ynes,” Opt. Lett. 14, 952–954 (1989). [CrossRef] [PubMed]
  23. J. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1982).
  24. Q. L. Zhou, R. F. Shi, O. Zamani-Khamari, and A. F. Garito, “Negative third-order optical responses in squaraines,” Nonlinear Opt. 6, 145–154 (1993).
  25. C. W. Dirk, L.-T. Cheng, and M. G. Kuzyk, “A simplified three-level model describing the molecular third-order nonlinear optical susceptibility,” Int. J. Quantum Chem. 43, 27–36 (1992). [CrossRef]
  26. C. W. Dirk and M. G. Kuzyk, “Squarylium dye-doped polymer systems as quadratic electrooptic materials,” Chem. Phys. 2, 4–6 (1990).
  27. C. W. Dirk, W. C. Herndon, F. Cervantes-Lee, H. Selnau, S. Martinez, P. Kalamegham, A. Tan, G. Campos, M. Velez, J. Zyss, I. Ledoux, and L. Cheng, “Squarylium dyes: structural factors pertaining to the negative third-order nonlinear optical response,” J. Am. Chem. Soc. 117, 2214–2225 (1995). [CrossRef]
  28. S. R. Marder, J. W. Perry, G. Bourhill, C. B. Gorman, B. G. Tiemann, and K. Mansour, “Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules,” Science 261, 186–189 (1993). [CrossRef] [PubMed]
  29. S. Das, T. L. Thanulingam, K. G. Thomas, P. V. Kamat, and M. George, “Photochemistry of squaraine dyes. 5. Aggregation of bis(2, 4-diydroxyphenl) squaraine and bis(2, 4, 6-trihydroxyphenyl) squaraine and their photodissociation in acetonitrile solutions,” J. Phys. Chem. 97, 13620–13624 (1993). [CrossRef]
  30. C. W. Dirk, J. Bao, M. Kuzyk, and C. Poga, “Soluble phthalocyanine silicone plastics and elastomers for nonlinear optics,” in Nonlinear Optical Properties of Organic Materials VII, G. R. Möhlmann, ed., Proc. SPIE 2285, 32–40 (1994). [CrossRef]
  31. P. P. Ho, N. L. Yang, T. Jimbo, Q. Z. Wang, and R. R. Alfano, “Ultrafast resonant optical Kerr effect in 4-butoxycarbonylmethylurethane polydiacetylene,” J. Opt. Soc. Am. B 4, 1025–1029 (1987). [CrossRef]
  32. M. K. Casstevens, M. Samoc, J. Pfleger, and P. N. Prasad, “Dynamics of third-order nonlinear optical processes in Langmuir–Blodgett and evaporated films of phthalocyanines,” J. Chem. Phys. 92, 2019–2024 (1990). [CrossRef]
  33. T. Sauer, W. Caseri, and G. Wegner, “Novel phthalocyanine polymers for applications in optical devices,” Mol. Cryst. Liq. Cryst. 183, 387–402 (1990).
  34. J. H. Andrews, J. D. V. Khaydarov, K. D. Singer, D. L. Hull, and K. C. Chuang, “Spectral dispersion of third harmonic generation in squaraines,” Nonlinear Opt. 10, 227–238 (1995).
  35. R. J. Kruhlak, “Characterization of molecular excited states for nonlinear optics,” Ph.D. dissertation (Washington State University, Pullman, Wash., 2000).
  36. R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977). [CrossRef]
  37. M. G. Kuzyk and C. W. Dirk, eds., Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, Vol. 60 of Optical Engineering (Marcel Dekker, New York, 1998).
  38. M. G. Kuzyk, “Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 85, 1218–1221 (2000). [CrossRef] [PubMed]
  39. M. G. Kuzyk, “Fundamental limits on third-order molecular susceptibilities,” Opt. Lett. 25, 1183–1185 (2000). [CrossRef]
  40. H. Kuhn, “A quantum-mechanical theory of light absorption of organic dyes and similar compounds,” J. Chem. Phys. 17, 1198–1212 (1949). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited