## Near-field optical study of selective photomodification of fractal aggregates

JOSA B, Vol. 18, Issue 5, pp. 698-705 (2001)

http://dx.doi.org/10.1364/JOSAB.18.000698

Acrobat PDF (822 KB)

### Abstract

Selective photomodification of fractal aggregates of silver nanoparticles is studied experimentally by photon-scanning-tunneling microscopy. Near-field optical images of the aggregates before and after photomodification show changes in the distribution of local electromagnetic fields in the near zone at subwavelength scale. These changes are much stronger than those measured in the far field. Results from numerical modeling of photomodification are in qualitative agreement with the experimental observations.

© 2001 Optical Society of America

**OCIS Codes**

(180.5810) Microscopy : Scanning microscopy

(260.2110) Physical optics : Electromagnetic optics

(310.6860) Thin films : Thin films, optical properties

**Citation**

W. David Bragg, Vadim A. Markel, Won-Tae Kim, Katyayani Banerjee, Marvin R. Young, Jane G. Zhu, Robert L. Armstrong, Vladimir M. Shalaev, Z. Charles Ying, Yulia E. Danilova, and Vladimir P. Safonov, "Near-field optical study of selective photomodification of fractal aggregates," J. Opt. Soc. Am. B **18**, 698-705 (2001)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-5-698

Sort: Year | Journal | Reset

### References

- D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning-tunneling-microscopy images of optical-excitation of fractal metal colloid clusters,” Phys. Rev. Lett. 72, 4149–4152 (1994).
- S. I. Bozhevolnyi, B. Vohnsen, A. V. Zayats, and I. I. Smolyaninov, “Fractal surface characterization: implications for plasmon polariton scattering,” Surf. Sci. 356, 268–274 (1996).
- S. I. Bozhevolnyi, “Localization phenomena in elastic surface-polariton scattering caused by surface roughness,” Phys. Rev. B 54, 8177–8185 (1996).
- S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, “Direct observation of localized dipolar excitations on rough nanostructured surfaces,” Phys. Rev. B 58, 11441–11448 (1998).
- K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
- K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E 57, R6281–6284 (1998).
- K. Kneipp, H. Kneipp, R. Manoharan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters,” Appl. Spectrosc. 52, 1493–1497 (1998).
- V. A. Markel, V. M. Shalaev, P. Zhang, W. Huynh, L. Tay, T. L. Haslett, and M. Moskovits, “Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters,” Phys. Rev. B 59, 10903–10909 (1999).
- E. Y. Poliakov, V. M. Shalaev, V. Shubin, and V. A. Markel, “Enhancement of nonlinear processes near rough nanometer-structured surfaces obtained by deposition of fractal colloidal sliver aggregates on a plain substrate,” Phys. Rev. B 60, 10739–10742 (1999).
- V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal Dielectric Films (Springer-Verlag, Berlin, 2000).
- E. Y. Poliakov, V. M. Shalaev, V. A. Markel, and R. Botet, “Enhanced Raman scattering from self-affine thin films,” Opt. Lett. 21, 1628–1630 (1996).
- E. Y. Poliakov, V. A. Markel, V. M. Shalaev, and R. Botet, “Nonlinear optical phenomena on rough surfaces of metal thin films,” Phys. Rev. B 57, 14901–14913 (1998).
- L. S. Markel, V. A. Muratov, and M. I. Stockman, “Optical properties of fractals: theory and numerical simulation,” Sov. Phys. JETP 71, 455–464 (1990).
- A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48, 571–575 (1988).
- Y. E. Danilova, A. I. Plekhanov, and V. P. Safonov, “Experimental study of polarization-selective holes, burning in absorption spectra of metal fractal clusters,” Physica A 185, 61–65 (1992).
- V. P. Safonov, V. M. Shalaev, V. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral dependence of selective photomodification in fractal aggregates of colloidal particles,” Phys. Rev. Lett. 80, 1102–1107 (1998).
- M. I. Stockman, L. N. Pandey, and T. F. George, “Inhomogeneous localization of polar eigenmodes in fractals,” Phys. Rev. B 53, 2183–2186 (1996).
- M. I. Stockman, “Inhomogeneous eigenmode localization, chaos, and correlations in large disordered clusters,” Phys. Rev. E 56, 6494–6507 (1997).
- M. I. Stockman, “Chaos and spatial correlations for dipolar eigenproblems,” Phys. Rev. Lett. 79, 4562–4565 (1997).
- V. M. Shalaev and M. I. Stockman, “Optical properties of fractal clusters (susceptibility, surface enhanced Raman scattering by impurities),” Sov. Phys. JETP 65, 287–294 (1987).
- V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, “Theory and numerical simulation of optical properties of fractal clusters,” Phys. Rev. B 43, 8183–8195 (1991).
- V. M. Shalaev, E. Y. Poliakov, and V. A. Markel, “Small-particle composites. 2. Nonlinear optical properties,” Phys. Rev. B 53, 2437–2449 (1996).
- V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep. 272, 61–137 (1996).
- A. I. Plekhanov, G. L. Plotnikov, and V. P. Safonov, “Production and spectroscopic study of silver fractal clusters by laser vaporation of target,” Opt. Spectrosc. (USSR) 71, 451–454 (1991).
- P. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391 (1982).
- V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. 1. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
- S. I. Bozhevolnyi, B. Vohnsen, E. A. Bozhevolnaya, and S. Berntsen, “Self-consistent model for photon scanning tunneling microscopy: implications for image formation and light scattering near a phase-conjugating mirror,” J. Opt. Soc. Am. A 13, 2381–2392 (1996).
- M. Lee, E. B. McDaniel, and J. W. P. Hsu, “An impedance based non-contact feedback control system for scanning probe microscopes,” Rev. Sci. Instrum. 67, 1468–1471 (1996).
- A. V. Butenko, V. M. Shalaev, and M. I. Stockman, “Giant impurity nonlinearities in optics of fractal clusters,” Sov. Phys. JETP 67, 60–69 (1988).
- V. M. Shalaev, R. Botet, D. P. Tsai, J. Kovacs, and M. Moskovits, “Fractals: localization of dipole excitations and giant optical polarizabilities,” Physica A 207, 197–207 (1994).
- M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Giant fluctuations of local optical-fields in fractal clusters,” Phys. Rev. Lett. 72, 2486–2489 (1994).
- J. F. Ready, Effects of High-Power Laser Radiation (Academic, New York, 1971).
- S. V. Karpov, A. K. Popov, and V. V. Slabko, “Observation of the two-photon photoelectric effect in low-intensity optical fields during photostimulated fractal aggregation of colloidal silver,” JETP Lett. 66, 106–110 (1997).
- H. Zhu and R. S. Averback, “Sintering processes of two nanoparticles: a study by molecular dynamics,” Philos. Mag. Lett. 73, 27–33 (1996).
- S. E. Rorak, A. Lo, R. T. Skodje, and K. L. Rowlen, “Changes in thin-metal-film nanostructure at near-ambient temperatures,” in Nanostructured Materials: Clusters, Composites, and Thin Films, V. M. Shalaev and M. Moskovits, eds. (American Chemical Society, Washington D.C., 1998), pp. 152–168.
- P. Meakin, “Formation of fractal clusters and networks by irreversible diffusion-limited aggregation,” Phys. Rev. Lett. 51, 1119–1122 (1983).
- V. A. Markel, V. M. Shalaev, E. Y. Poliakov, and T. F. George, “Numerical studies of second-and fourth-order correlation functions in cluster-cluster aggregates in application to optical scattering,” Phys. Rev. E 55, 7313–7333 (1997).
- E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
- B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
- B. Draine and P. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
- D. Keller and C. Bustmante, “Theory of the interaction of light with large inhomogeneous molecular aggregates. II. Psi-type circular dichroism,” J. Chem. Phys. 84, 2972–2980 (1986).
- J. E. Sansonetti and J. K. Furdyna, “Depolarization effects in arrays of spheres,” Phys. Rev. B 22, 2866–2874 (1980).
- F. Claro, “Absorption spectrum of neighbouring dielectric grains,” Phys. Rev. B 25, 7875–7876 (1982).
- Y. E. Danilova, S. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Stockman, “Experimental investigation of optical nonlinearities of silver fractal clusters,” in Proceedings of the X International Vavilov Conference on Nonlinear Optics, S. G. Rautian, ed. (Nova Science, New York, 1992), pp. 295–302.
- Y. E. Danilova, V. A. Markel, and V. P. Safonov, “Light absorption by random clusters of silver particles,” Atmos. Oceanic Opt. 6, 821–826 (1993).
- V. A. Markel and V. M. Shalaev, “Computational approaches in optics of fractal clusters,” in Computational Studies of New Materials, D. A. Jelski and T. F. George, eds. (World Scientific, Singapore, 1999), pp. 210–243.
- D. W. Mackowski, “Electrostatic analysis of radiative absorption by sphere clusters in the Rayleigh limit: application to soot particles,” Appl. Opt. 34, 3535–3545 (1995).
- D. W. Mackowski and M. Mischenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266–2278 (1996).
- P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.