OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 6 — Jun. 1, 2001
  • pp: 737–742

Dispersion-compensating dual-mode optical fibers desirable for erbium-doped-fiber-amplified systems

Masashi Eguchi  »View Author Affiliations


JOSA B, Vol. 18, Issue 6, pp. 737-742 (2001)
http://dx.doi.org/10.1364/JOSAB.18.000737


View Full Text Article

Enhanced HTML    Acrobat PDF (154 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A broadband dispersion-compensating dual-mode optical fiber with a double-layer profile core is proposed to compensate for positive dispersion in conventional single-mode optical fibers operating near 1.55 µm. This wavelength band is suitable for erbium-doped-fiber-amplified systems. It is known that the first higher-order mode of dual-mode fibers exhibits large negative waveguide dispersion, and double-layer profile core fibers are dispersion-shifted fibers whose transmission and bending losses are lower than those of simple core-cladding dispersion-shifted fibers. Such advantages are attractive for commercial devices or modules. Here, a dispersion-compensating dual-mode fiber with a double-layer profile core that satisfies both low bending loss and broadband dispersion compensation is proposed.

© 2001 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2400) Fiber optics and optical communications : Fiber properties

Citation
Masashi Eguchi, "Dispersion-compensating dual-mode optical fibers desirable for erbium-doped-fiber-amplified systems," J. Opt. Soc. Am. B 18, 737-742 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-6-737


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. J. Antos and D. K. Smith, “Design and characterization of dispersion compensating fiber based on the LP01 mode,” J. Lightwave Technol. 12, 1739–1745 (1994). [CrossRef]
  2. A. Bjarklev, T. Rasmussen, O. Lumholt, K. Rottwitt, and M. Helmer, “Optimal design of single-cladded dispersioncompensating optical fibers,” Opt. Lett. 19, 457–459 (1994). [CrossRef] [PubMed]
  3. C. D. Poole, J. M. Wiesenfeld, and A. R. McCormick, “Broadband dispersion compensation by using the higher-order spatial mode in a two-mode fiber,” Opt. Lett. 17, 985–987 (1992). [CrossRef] [PubMed]
  4. C. D. Poole, J. M. Wiesenfeld, and D. J. DiGiovanni, “Elliptical-core dual-mode fiber dispersion compensator,” IEEE Photonics Technol. Lett. 5, 194–197 (1993). [CrossRef]
  5. C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994). [CrossRef]
  6. M. Eguchi, M. Koshiba, and Y. Tsuji, “Dispersion compensation based on dual-mode optical fiber with inhomogeneous profile core,” J. Lightwave Technol. 14, 2387–2394 (1996). [CrossRef]
  7. F. Ouellette, J. F. Cliche, and S. Gagnon, “All-fiber devices for chromatic dispersion compensation based on chirped distributed resonant coupling,” J. Lightwave Technol. 12, 1728–1738 (1994). [CrossRef]
  8. U. Eriksson, P. Blixt, and J. A. Tellefsen, Jr., “Design of fiber gratings for total dispersion compensation,” Opt. Lett. 19, 1028–1030 (1994). [CrossRef] [PubMed]
  9. A. Yariv, D. Fekete, and D. M. Pepper, “Compensation for channel dispersion by nonlinear optical phase conjugation,” Opt. Lett. 4, 52–54 (1979). [CrossRef] [PubMed]
  10. N. Kuwaki, M. Ohashi, C. Tanaka, and N. Uesugi, “Dispersion-shifted convex-index single-mode fibres,” Electron. Lett. 21, 1186–1187 (1985). [CrossRef]
  11. N. Kuwaki, M. Ohashi, C. Tanaka, N. Uesugi, S. Seikai, and Y. Negishi, “Characteristics of dispersion-shifted dual shape core single-mode fibers,” J. Lightwave Technol. LT-5, 792–797 (1987). [CrossRef]
  12. T. Tanaka and Y. Suematsu, “An exact analysis of cylindrical fiber with index distribution by matrix method and itsapplication to focusing fiber,” Trans. Inst. Electron. Commun. Eng. Jpn., Sect. E 59, 1–8 (1976).
  13. W. A. Gambling and H. Matsumura, “Propagation in radially-inhomogeneous single-mode fibre,” Opt. Quantum Electron. 10, 31–40 (1978). [CrossRef]
  14. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10, 2252–2258 (1971). [CrossRef] [PubMed]
  15. M. Eguchi and M. Koshiba, “Behavior of the first higher-order modes of a circular core optical fiber whose core cross-section changes into an ellipse,” J. Lightwave Technol. 13, 127–136 (1995). [CrossRef]
  16. J. N. Blake, B. Y. Kim, and H. J. Shaw, “Fiber-optic modal coupler using periodic microbending,” Opt. Lett. 11, 177–179 (1986). [CrossRef] [PubMed]
  17. C. D. Poole, C. D. Townsend, and K. T. Nelson, “Helical-grating two-mode fiber spatial-mode coupler,” J. Lightwave Technol. 9, 598–609 (1991). [CrossRef]
  18. W. P. Risk, R. C. Youngquist, G. S. Kino, and H. J. Shaw, “Acousto-optic frequency shifting in birefringent fiber,” Opt. Lett. 9, 309–311 (1984). [CrossRef] [PubMed]
  19. B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, “All-fiber acousto-optic frequency shifter,” Opt. Lett. 11, 389–391 (1986). [CrossRef] [PubMed]
  20. E. Bianciardi and V. Rizzoli, “Propagation in graded-core fibres: a unified numerical description,” Opt. Quantum Electron. 9, 121–133 (1977). [CrossRef]
  21. K. Morishita, “Numerical analysis of pulse broadening in graded index optical fibers,” IEEE Trans. Microwave Theory Tech. MTT-29, 348–352 (1981). [CrossRef]
  22. K. Morishita, Y. Obata, and N. Kumagai, “An exact analysis of group velocity for propagation modes in optical fibers,” IEEE Trans. Microwave Theory Tech. 30, 1821–1826 (1982). [CrossRef]
  23. R. W. Davies, D. Davidson, and M. P. Singh, “Single-mode optical fiber with arbitrary refractive-index profile: propagation solution by the Numerov method,” J. Lightwave Technol. LT-3, 619–627 (1985). [CrossRef]
  24. D. Marcuse, “Bend loss of slab and fiber modes computed with diffraction theory,” IEEE J. Quantum Electron. 29, 2957–2961 (1993). [CrossRef]
  25. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965). [CrossRef]
  26. A. Kumar and R. K. Varshney, “Propagation characteristics of dual-mode elliptical-core optical fibers,” Opt. Lett. 14, 817–819 (1989). [CrossRef] [PubMed]
  27. M. Eguchi and M. Koshiba, “Accurate finite-element analysis of dual-mode highly elliptical-core fibers,” J. Lightwave Technol. 12, 607–613 (1994). [CrossRef]
  28. R. B. Dyott, “Composition of LP11 modes in elliptically cored fibre,” Electron. Lett. 30, 728–730 (1994). [CrossRef]
  29. R. B. Dyott, Elliptical Fiber Waveguides (Artech House, Norwood, Mass., 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited