OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 6 — Jun. 1, 2001
  • pp: 762–769

Optical coupling between a microresonator and an adjacent dielectric structure: effects of resonator size

H. Ishikawa, H. Tamaru, and K. Miyano  »View Author Affiliations

JOSA B, Vol. 18, Issue 6, pp. 762-769 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (667 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical coupling between a spherical microresonator and a plane dielectric substrate is investigated for a small sphere whose diameter is only a few ten times as large as the optical wavelength. A unique characteristic of small microresonators, relaxation of the phase-matching requirement that is due to the small size, is demonstrated on the basis of experimental results and model numerical calculations. The difference between the frequency and the propagation constant as parameters to describe the resonances of microresonators is clarified. Based on the numerical results, intrinsic restriction on a distance between the resonator and the coupler is also suggested.

© 2001 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(180.0180) Microscopy : Microscopy
(230.3990) Optical devices : Micro-optical devices
(260.6970) Physical optics : Total internal reflection
(290.4020) Scattering : Mie theory
(350.3950) Other areas of optics : Micro-optics

H. Ishikawa, H. Tamaru, and K. Miyano, "Optical coupling between a microresonator and an adjacent dielectric structure: effects of resonator size," J. Opt. Soc. Am. B 18, 762-769 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997). [CrossRef]
  2. D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range,” Opt. Lett. 22, 1244–1246 (1997). [CrossRef] [PubMed]
  3. A. Serpengüzel, S. Arnold, and G. Griffel, “Excitation of resonances of microsphere on an optical fiber,” Opt. Lett. 20, 654–656 (1995). [CrossRef]
  4. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989). [CrossRef]
  5. A. Shinya and M. Fukui, “Finite-difference time-domain analysis of the interaction of Gaussian evanescent light with a single dielectric sphere or ordered dielectric spheres,” Opt. Rev. 6, 215–223 (1999). [CrossRef]
  6. T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-binding photonic molecule modes of resonant bispheres,” Phys. Rev. Lett. 82, 4623–4626 (1999). [CrossRef]
  7. B. E. Little, S. T. Chu, and H. A. Haus, “Track changing by use of the phase response of microspheres and resonators,” Opt. Lett. 23, 894–896 (1998). [CrossRef]
  8. F. C. Blom, D. R. van Dijk, H. J. W. M. Hoekstra, A. Driessen, and Th. J. A. Popma, “Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device,” Appl. Phys. Lett. 71, 747–749 (1997). [CrossRef]
  9. B. E. Little, J. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998). [CrossRef]
  10. F. C. Blom, H. Keldman, H. J. W. M. Hoekstra, A. Driessen, Th. J. A. Popma, S. T. Chu, and B. E. Little, “A single channel dropping filter based on a cylindrical microresonator,” Opt. Commun. 167, 77–82 (1999). [CrossRef]
  11. S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15, 2154–2165 (1997). [CrossRef]
  12. S. C. Hagness, J. P. Zhang, R. C. Tiberio, and S. T. Ho, “Propagation loss measurement in semiconductor microcavity ring and disk resonators,” J. Lightwave Technol. 16, 1308–1314 (1998). [CrossRef]
  13. M. K. Chin and S. T. Ho, “Design and modeling of waveguide-coupled single-mode microring resonators,” J. Lightwave Technol. 16, 1433–1446 (1998). [CrossRef]
  14. M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, L. Wang, Y. G. Zhao, and S. T. Ho, “GaAs microcavity channel-dropping filter based on a race-track resonator,” IEEE Photon. Technol. Lett. 11, 1620–1622 (1999). [CrossRef]
  15. M. L. M. Balistreri, D. J. W. Klunder, F. C. Blom, A. Driessen, H. W. J. M. Hoekstra, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Visualizing the whispering gallery modes in a cylindrical optical microcavity,” Opt. Lett. 24, 1829–1831 (1999). [CrossRef]
  16. M. Cai and K. Vahala, “Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration,” Opt. Lett. 25, 260–262 (2000). [CrossRef]
  17. E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969). [CrossRef]
  18. S. Schiller, I. I. Yu, M. M. Fejer, and R. L. Byer, “Fused silica monolithic total-internal-reflection resonator,” Opt. Lett. 17, 378–380 (1992). [CrossRef] [PubMed]
  19. G. Griffel, S. Arnold, D. Taskent, A. Serpengüzel, J. Connolly, and N. Morris, “Morphology-dependent resonances of a microsphere-optical fiber system,” Opt. Lett. 21, 695–597 (1996). [CrossRef] [PubMed]
  20. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett. 7, 288–290 (1982). [CrossRef] [PubMed]
  21. D. R. Rowland and J. D. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,” IEE Proc. J 140, 177–188 (1993).
  22. In the case of an add–drop filter, light is coupled out only from the secondary output port (secondary waveguide). Output intensity at the primary waveguide disappears because of the destructive interference between the incident and the output beams.
  23. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997). [CrossRef] [PubMed]
  24. This can be estimated by one plotting the electric field of the corresponding resonant mode (whispering-gallery-mode) at a surface of interest [see Figs. 6(a) and 6(b) of Ref. 28]. When a curved substrate or waveguide is used as a coupler, Δz can be larger than this value.
  25. For a larger glass spherical resonator in contact with a waveguide and hence in the overcoupled condition, QT in the range of 105–106 has been reported. The quality factor of a small resonator is expected to be lower.
  26. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonator: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999). [CrossRef]
  27. H. Ishikawa, H. Tamaru, and K. Miyano, “Observation of a modulation effect caused by a microsphere resonator strongly coupled to a dielectric substrate,” Opt. Lett. 24, 643–645 (1999). [CrossRef]
  28. H. Ishikawa, H. Tamaru, and K. Miyano, “Microsphere resonators strongly coupled to a plane dielectric substrate: coupling via the optical near field,” J. Opt. Soc. Am. A 17, 802–813 (2000). [CrossRef]
  29. We label the mode number (i.e., total angular momentum of the mode) by l, the azimuthal mode number (z component of angular momentum) by m, and the order number (number of the intensity maximum in the radial direction) by s. The quantization axis of the angular momentum is taken parallel to the substrate and perpendicular to the incidence plane.
  30. The position of the observation plane (z in the caption of Fig. 4) is determined from the lateral position of the totally reflected part of the beam. Then the phase difference between the reflected beam and the coupled-out beam is fixed by the model
  31. G. Roll, T. Kaiser, S. Lange, and G. Schweiger, “Ray interpretation of multipole fields in spherical dielectric cavities,” J. Opt. Soc. Am. A 15, 2879–2891 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited