OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 6 — Jun. 1, 2001
  • pp: 794–803

Influence of the symmetry rules for Raman susceptibility on the accuracy of nonlinear index measurements in optical fibers

A. Martínez-Rios, Andrey N. Starodumov, Yu. O. Barmenkov, V. N. Filippov, and I. Torres-Gomez  »View Author Affiliations


JOSA B, Vol. 18, Issue 6, pp. 794-803 (2001)
http://dx.doi.org/10.1364/JOSAB.18.000794


View Full Text Article

Acrobat PDF (195 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A general expression for a nonlinear polarization in fibers, in which the different symmetry rules for the electronic and Raman contributions to the susceptibility are taken into account, is derived. The contribution of the Raman effect to the total nonlinearity is calculated for different polarizations of a pump and the Stokes wave in polarization-maintaining fibers as well as in fibers with randomly varying birefringence. The error in the measurements of the n2 coefficient caused by the different symmetry rules for the Raman and electronic contributions is shown to depend on germanium concentration and a frequency shift varying from 3.3% in polarization-maintaining fibers to 10% in fibers with random birefringence. The ratio between cross-phase modulation and self-modulation strengths strongly depends on a frequency shift and the polarization state of the interacting waves and varies from 1.2 to 2 in fibers with germanium concentration from 0 to 18 mol.%.

© 2001 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.3270) Nonlinear optics : Kerr effect
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect
(190.5890) Nonlinear optics : Scattering, stimulated

Citation
A. Martínez-Rios, Andrey N. Starodumov, Yu. O. Barmenkov, V. N. Filippov, and I. Torres-Gomez, "Influence of the symmetry rules for Raman susceptibility on the accuracy of nonlinear index measurements in optical fibers," J. Opt. Soc. Am. B 18, 794-803 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-6-794


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. R. Chraplyvy, “Limitations on lightwave communications imposed by optical-fiber nonlinearities,” J. Lightwave Technol. 8, 1548–1557 (1990).
  2. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
  3. K. S. Kim, R. H. Stolen, W. A. Reed, and K. W. Quoi, “Measurement of the nonlinear index of silica-core and dispersion-shifted fibers,” Opt. Lett. 19, 257–259 (1994).
  4. R. H. Stolen, W. A. Reed, K. S. Kim, and G. T. Harvey, “Measurement of the nonlinear refractive index of long dispersion-shifted fibers by self-phase modulation at 1.55 μm,” J. Lightwave Technol. 16, 1006–1012 (1998).
  5. T. Kato, Y. Suetsugu, M. Takagi, E. Sasaoka, and M. Nishimura, “Measurement of the nonlinear refractive index in optical fiber by the cross-phase-modulation method with depolarized pump light,” Opt. Lett. 20, 988–990 (1995).
  6. T. Kato, Y. Suetsugu, and M. Nishimura, “Estimation of nonlinear refractive index in various silica-based glasses for optical fibers,” Opt. Lett. 20, 2279–2281 (1995).
  7. S. V. Chernikov and J. R. Taylor, “Measurement of normalization factor of n2 for random polarization in optical fibers,” Opt. Lett. 21, 1559–1561 (1996).
  8. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 μm,” Opt. Lett. 21, 1966–1968 (1996).
  9. Y. Namihira, A. Miyata, and N. Tanahashi, “Nonlinear coefficient measurements for dispersion shifted fibres using self-phase modulation method at 1.55 μm,” Electron. Lett. 30, 1171–1172 (1994).
  10. D. Monzon-Hernandez, A. N. Starodumov, Yu. O. Barmenkov, I. Torres-Gomez, and F. Mendoza-Santoyo, “Continuous-wave measurement of the fiber nonlinear refractive index,” Opt. Lett. 23, 1274–1276 (1998).
  11. L. Prigent and J.-P. Hamaide, “Measurement of fiber nonlinear Kerr coefficient by four-wave mixing,” IEEE Photon. Technol. Lett. 5, 1092–1095 (1993).
  12. R. Hellwarth, J. Cherlow, and T.-T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B 11, 964–967 (1975).
  13. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989).
  14. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).
  15. A. Höök, “Influence of stimulated Raman scattering oncross-phase modulation between waves in optical fibers,” Opt. Lett. 17, 115–117 (1992).
  16. R. H. Stolen and E. P. Ippen, “Raman gain in optical waveguides,” Appl. Phys. Lett. 22(6), 276–278 (1973).
  17. C. R. Menyuk, “Pulse propagation in an elliptically birefringent Kerr medium,” IEEE J. Quantum Electron. 25, 2674–2682 (1989).
  18. E. A. Golovchenko and A. N. Pilipetskii, “Unified analysis of four-photon mixing, modulational instability, and stimulated Raman scattering under various polarization conditions in fibers,” J. Opt. Soc. Am. B 11, 92–101 (1994).
  19. S. Trillo and S. Wabnitz, “Parametric and Raman amplification in birefringent fibers,” J. Opt. Soc. Am. B 9, 1061–1082 (1992).
  20. C. Headley III and G. P. Agrawal, “Unified description of ultrafast stimulated Raman scattering in optical fibers,” J. Opt. Soc. Am. B 13, 2170–2177 (1996).
  21. C. R. Menyuk, M. N. Islam, and J. P. Gordon, “Raman effect in birefringent fibers,” Opt. Lett. 16, 566–568 (1991).
  22. S. V. Chernikov and P. V. Mamyshev, “Effect of polarization on Raman scattering in optical fibers,” Sov. Lightwave Commun. 1, 301–312 (1991).
  23. A. N. Starodumov, Yu. O. Barmenkov, A. Martínez, I. Torres, and L. A. Zenteno, “Experimental demonstration of Raman effect-based optical transistor,” Opt. Lett. 23, 352–354 (1998).
  24. S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Multi-wavelength pumped silica-fibre Raman amplifiers,” in Optical Fiber Communication Conference, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999).
  25. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, New York, 1990).
  26. N. Tang and R. L. Sutherland, “Time-domain theory for pump-probe experiments with chirped pulses,” J. Opt. Soc. Am. B 14, 3412–3423 (1997).
  27. R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).
  28. F. L. Galeener, J. C. Mikkelsen, Jr., R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3 and P2O5,” Appl. Phys. Lett. 32(1), 34–36 (1978).
  29. S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, “Optical gain spectrum of GeO2-SiO2 Raman fiber amplifiers,” Proc. IEEE 136, 301–305 (1989).
  30. T. Nakashima, S. Seikai, and M. Nakazawa, “Dependence of Raman gain on relative index difference for GeO2-doped single-mode fibers,” Opt. Lett. 10, 420–422 (1985).
  31. D. J. Dougherty, F. X. Kärtner, H. A. Haus, and E. P. Ippen, “Measurement of the Raman gain spectrum of optical fibers,” Opt. Lett. 20, 31–33 (1995).
  32. D. Mahgerefteh, D. L. Butler, J. Goldhar, B. Rosenberg, and G. L. Burdge, “Technique for measurement of the Raman gain coefficient in optical fibers,” Opt. Lett. 21, 2026–2028 (1996).
  33. P. K. A. Wai and C. R. Menyuk, “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 14, (2) 148–157 (1996).
  34. S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10(1), 28–34 (1992).
  35. R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. QE-15, 1157–1160 (1979).
  36. E. L. Buckland and R. W. Boyd, “Electrostrictive contribution to the intensity-dependent refractive index of optical fibers,” Opt. Lett. 21, 1117–1119 (1996).
  37. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited