OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 6 — Jun. 1, 2001
  • pp: 855–860

Measurement of the hyperfine structure of the 4d2D3/2,5/2 levels and isotope shifts of the 4p2P3/2 → 4d2D3/2 and 4p2P3/2 → 4d2D5/2 transitions in gallium 69 and 71

Steven J. Rehse, William M. Fairbank, Jr., and Siu Au Lee  »View Author Affiliations

JOSA B, Vol. 18, Issue 6, pp. 855-860 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (459 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The hyperfine structure of the 4d2D3/2,5/2 levels of  69,71Ga is determined. The 4p2P3/24d2D3/2 (294.50-nm) and 4p2P3/24d2D5/2 (294.45-nm) transitions are studied by laser-induced fluorescence in an atomic Ga beam. The hyperfine A constant measured for the 4d2D5/2 level is 77.3±0.9 MHz for  69Ga and 97.9±0.7 MHz for  71Ga (3σ errors). The A constant measured for the 4d2D3/2 level is -36.3±2.2 MHz for  69Ga and -46.2±3.8 MHz for  71Ga. These measurements correct sign errors in the previous determination of these constants. For  69Ga the hyperfine B constants measured for the 4d2D5/2 and the 4d2D3/2 levels are 5.3±4.1 MHz and 4.6±4.2 MHz, respectively. The isotope shift is determined to be 114±8 MHz for the 4p2P3/24d2D3/2 transition and 115±7 MHz for the 4p2P3/24d2D5/2 transition. The lines of  71Ga are shifted to the blue. This is in agreement with previous measurement.

© 2001 Optical Society of America

OCIS Codes
(020.2930) Atomic and molecular physics : Hyperfine structure
(020.3260) Atomic and molecular physics : Isotope shifts
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6210) Spectroscopy : Spectroscopy, atomic

Steven J. Rehse, William M. Fairbank, Jr., and Siu Au Lee, "Measurement of the hyperfine structure of the 4d2D3/2, 5/2 levels and isotope shifts of the 4p2P3/2 → 4d2D3/2 and 4p2P3/2 → 4d2D5/2 transitions in gallium 69 and 71," J. Opt. Soc. Am. B 18, 855-860 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. H. Thywissen, K. S. Johnson, R. Younkin, N. H. Dekker, K. K. Berggren, A. P. Chu, M. Prentiss, and S. A. Lee, “Nanofabrication using neutral atomic beams,” J. Vac. Sci. Technol. B 15, 2093–2100 (1997). [CrossRef]
  2. For a discussion of light forces and applications, see, for example, the following special issues: P. Meystre and S. Stenholm, eds., “The mechanical effects of light” J. Opt. Soc. Am. B 2, 1706–1853 (1985); S. Chu and C. Wieman, eds., “Laser cooling and trapping of atoms,” J. Opt. Soc. Am. B 6, 2020–2270 (1989); J. Mlynek, V. Balykin, and P. Meystre, eds., “Optics and interferometry with atoms,” Appl. Phys. B 54, 319–485 (1992).See also Atom Optics, Proc. SPIE 2995, M. G. Prentiss and W. D. Phillips eds. (SPIE, Bellingham, Washington, 1997), pp. 2–300.
  3. G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, “Using light as a lens for submicron, neutral-atom lithography,” Phys. Rev. Lett. 69, 1636–1639 (1992). [CrossRef] [PubMed]
  4. V. Natarajan, R. E. Behringer, and G. Timp, “High-contrast, high-resolution focusing of neutral atoms using light forces,” Phys. Rev. A 53, 4381–4385 (1996). [CrossRef] [PubMed]
  5. J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, “Laser-focused atomic deposition,” Science 262, 877–880 (1993). [CrossRef] [PubMed]
  6. R. Gupta, J. J. McClelland, Z. J. Jabbour, and R. J. Celotta, “Nanofabrication of a two-dimensional array using laser-focused atomic deposition,” Appl. Phys. Lett. 67, 1378–1380 (1995). [CrossRef]
  7. U. Drodofsky, J. Stuhler, B. Brezger, T. Schulze, M. Drewsen, T. Pfau, and J. Mlynek, “Nanometerscale lithography with chromium atoms using light forces,” Microelectron. Eng. 35, 285–288 (1997). [CrossRef]
  8. F. Lison, H.-J. Adams, D. Haubrich, M. Kreis, S. Nowak, and D. Meschede, “Nanoscale atomic lithography with a cesium atomic beam,” Appl. Phys. B 65, 419–421 (1997). [CrossRef]
  9. R. W. McGowan, D. M. Giltner, and S. A. Lee, “Light force cooling, focusing, and nanometer-scale deposition of aluminum atoms,” Opt. Lett. 20, 2535–2537 (1995). [CrossRef] [PubMed]
  10. S. J. Rehse, R. W. McGowan, and S. A. Lee, “Optical manipulation of Group III atoms,” Appl. Phys. B 70, 657–660 (2000). [CrossRef]
  11. R. T. Daly, Jr., and J. H. Holloway, “Nuclear magnetic octupole moments of the stable gallium isotopes,” Phys. Rev. 96, 539–540 (1954).Specifically, the constants for the 42P3/2 level are, for 69Ga, A=190.79428(15) MHz and B=62.52247(30) MHz, and for 71Ga, A= 242.43395(20) MHz and B=39.39904(40) MHz. [CrossRef]
  12. K. H. Weber, J. Lawrenz, A. Obrebski, and K. Niemax, “High-resolution laser spectroscopy of aluminum, gallium, and thallium,” Phys. Scr. 35, 309–312 (1987). [CrossRef]
  13. C. E. Moore, Atomic Energy Levels (U.S. GPO, Washington, D.C., 1971), Vol. II.
  14. G. T. Emery, “Hyperfine structure,” in Atomic, Molecular, and Optical Physics Handbook, G. W. F. Drake, ed. (American Institute of Physics, Woodbury, N.Y., 1996), pp. 198–205.
  15. The pump laser was a Spectra Physics Nd:YVO4 Millenia™ laser. The tunable dye laser was a Coherent 699–21 with Rhodamine 6G dye.
  16. ADA (NH4H2AsO4) is a hygroscopic, temperature-tunable nonlinear second-harmonic-generation crystal. Our crystal was a 45° Z-cut crystal purchased from Quantum Technology, Inc. We have measured its second-harmonic-generation efficiency to be between 6×10−5 W/W2 and 2×10−4 W/W2. These numbers may not represent optimum second-harmonic-generation efficiency, as the focusing of the doubling cavity's waist was not optimized for this particular crystal.
  17. J. L. Hall and S. A. Lee, “Interferometric real-time display of cw dye laser wavelength with sub-Doppler accuracy,” Appl. Phys. Lett. 29, 367–369 (1976). [CrossRef]
  18. L. Hlousek, S. A. Lee, and W. M. Fairbank, Jr., “Precision wavelength measurements and new experimental Lamb shifts in helium,” Phys. Rev. Lett. 50, 328–331 (1983). [CrossRef]
  19. The tunable UV laser was linearly polarized, and the saturation intensities calculated for the transitions between mF levels of the F=3→F=4 transition are 202 mW/cm2 for the mF=0→mF=0 transition, 215 mW/cm2 for the mF=1→mF=1 transition, 269 mW/cm2 for the mF=2→mF=2 transition, and 464 mW/cm2 for the mF=3→mF=3 transition. These values are typical of the other F→F transitions as well.
  20. G. H. Fuller, “Nuclear spins and moments,” J. Phys. Chem. Ref. Data 5, 835–1016 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited