OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 6 — Jun. 1, 2001
  • pp: 872–881

Optimization of adaptive feedback control for ultrafast semiconductor spectroscopy

Jens Kunde, Benedict Baumann, Sebastian Arlt, François Morier-Genoud, Uwe Siegner, and Ursula Keller  »View Author Affiliations


JOSA B, Vol. 18, Issue 6, pp. 872-881 (2001)
http://dx.doi.org/10.1364/JOSAB.18.000872


View Full Text Article

Acrobat PDF (298 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an experimental study of the control of ultrafast semiconductor nonlinearities by adaptive feedback optical pulse shaping. In the feedback loop, an evolutionary algorithm directs the modulation of the spectral phase of 20-fs laser pulses. In this way, control is achieved over the broadband semiconductor continuum nonlinearity as measured in differential transmission experiments. Design guidelines are given for the implementation of the evolutionary algorithm. Our results demonstrate that a feedback loop with a carefully designed algorithm can serve as a new, sensitive tool in ultrafast semiconductor spectroscopy. Moreover, an optimized feedback loop allows for the substantial enhancement of ultrafast semiconductor nonlinearities.

© 2001 Optical Society of America

OCIS Codes
(320.5540) Ultrafast optics : Pulse shaping
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(320.7150) Ultrafast optics : Ultrafast spectroscopy

Citation
Jens Kunde, Benedict Baumann, Sebastian Arlt, François Morier-Genoud, Uwe Siegner, and Ursula Keller, "Optimization of adaptive feedback control for ultrafast semiconductor spectroscopy," J. Opt. Soc. Am. B 18, 872-881 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-6-872


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22, 1793–1795 (1997).
  2. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
  3. A. Efimov, M. D. Moores, N. M. Beach, J. L. Krause, and D. H. Reitze, “Adaptive control of pulse phase in a chirped-pulse amplifier,” Opt. Lett. 23, 1915–1917 (1998).
  4. E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, S. Backus, and G. Vdovin, “Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation,” Opt. Lett. 25, 587–589 (2000).
  5. D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, “Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping,” Appl. Phys. B 70, S125–S131 (2000).
  6. D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive real-time femtosecond pulse shaping,” J. Opt. Soc. Am. B 15, 1615–1619 (1998).
  7. F. G. Omenetto, B. P. Luce, and A. J. Taylor, “Genetic algorithm pulse shaping for optimum femtosecond propagation in optical fibers,” J. Opt. Soc. Am. B 16, 2005–2009 (1999).
  8. R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature (London) 406, 164–166 (2000).
  9. R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
  10. C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280, 151–158 (1997).
  11. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
  12. T. Hornung, R. Meier, D. Zeidler, K.-L. Kompa, D. Proch, and M. Motzkus, “Optimal control of one- and two-photon transitions with shaped femtosecond pulses and feedback,” Appl. Phys. B 71, 277–284 (2000).
  13. T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, “Controlling the shape of a quantum wavefunction,” Nature (London) 397, 233–235 (1999).
  14. J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, and U. Keller, “Adaptive feedback control of ultrafast semiconductor nonlinearities,” Appl. Phys. Lett. 77, 924–926 (2000).
  15. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, 2nd ed. (Springer-Verlag, Berlin, 1999).
  16. H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer-Verlag, Berlin, 1996).
  17. H. P. Schwefel, Evolution and Optimum Seeking (Wiley, New York, 1995).
  18. J. Kunde, S. Arlt, L. Gallmann, F. Morier-Genoud, U. Siegner, and U. Keller, “Sensitive characterization of phase and amplitude semiconductor nonlinearities for broadband 20 fs excitation,” J. Appl. Phys. 88, 1187–1189 (2000).
  19. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990).
  20. M. M. Wefers and K. A. Nelson, “Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators,” J. Opt. Soc. Am. B 12, 1343–1362 (1995).
  21. M. M. Wefers and K. A. Nelson, “Generation of high-fidelity programmable ultrafast optical waveforms,” Opt. Lett. 20, 1047–1049 (1995).
  22. M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32, 161–172 (1996).
  23. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
  24. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28, 908–920 (1992).
  25. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. Sweetser, M. A. Krumbügel, and B. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 1–19 (1997).
  26. A. Efimov and D. H. Reitze, “FROG characterization of complex SLM-shaped amplified waveforms,” in Conference on Lasers and Electro-Optics, Vol. 39 of 2000 OSA Technical Digest Series (Optical Society of America, Washington D.C., 2000), pp. 621–622.
  27. T. Brixner, M. Strehle, and G. Gerber, “Feedback-controlled optimization of amplified femtosecond laser pulses,” Appl. Phys. B 68, 281–284 (1999).
  28. T. Bäck, Evolutionary Algorithms in Theory and Practice (Oxford U. Press, New York, 1996).
  29. The ratio 100/15≈7 is chosen to guarantee a sufficiently low selection pressure.17
  30. J. Kunde, U. Siegner, S. Arlt, G. Steinmeyer, F. Morier-Genoud, and U. Keller, “Potential of femtosecond chirp con-trol of ultrabroadband semiconductor continuum nonlinearities,” J. Opt. Soc. Am. B 16, 2285–2294 (1999).
  31. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, Pa., 1993).
  32. For the SI DT signal, we took the pump-induced transmission change ΔTav normalized to the transmission in absence of the pump T0, av. Both quantities ΔTav and T0, av are averaged individually over the probe spectrum.
  33. J.-P. Foing, D. Hulin, M. Joffre, M. K. Jackson, J.-L. Oudar, C. Tanguay, and M. Combescot, “Absorption edge singularities in highly excited semiconductors,” Phys. Rev. Lett. 68, 110–113 (1992).
  34. K. El Sayed and C. J. Stanton, “Line-shape analysis of differential transmission spectra in the coherent regime,” Phys. Rev. B 55, 9671–9678 (1997).
  35. B. Fluegel, N. Peyghambarian, G. Olbright, M. Lindberg, S. W. Koch, M. Joffre, D. Hulin, A. Migus, and A. Antonetti, “Femtosecond studies of coherent transients in semiconductors,” Phys. Rev. Lett. 59, 2588–2591 (1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited