OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 7 — Jul. 1, 2001
  • pp: 901–907

Passive and adaptive optical equalizer for reconfigurable multiwavelength networks

Winston K. Chan and David R. Andersen  »View Author Affiliations


JOSA B, Vol. 18, Issue 7, pp. 901-907 (2001)
http://dx.doi.org/10.1364/JOSAB.18.000901


View Full Text Article

Acrobat PDF (224 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the concept for a passive device that equalizes the power of a multiwavelength optical signal without spectrally dispersing the signal. The proposed device consists of a Fabry–Perot cavity with a photorefractive medium. It is scalable in the number of wavelengths, adapts to time variations in the optical power, and does not require an external power reference, so it is well suited for equalizing the output of erbium-doped fiber amplifiers in reconfigurable, multiwavelength, optical networks. We give an analysis of the device’s operation and of network behavior.

© 2001 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.4510) Fiber optics and optical communications : Optical communications

Citation
Winston K. Chan and David R. Andersen, "Passive and adaptive optical equalizer for reconfigurable multiwavelength networks," J. Opt. Soc. Am. B 18, 901-907 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-7-901


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. R. Giles and D. I. DeGionvanni, “Dynamic gain equalization in two-stage fiber amplifiers,” IEEE Photonics Technol. Lett. 2, 866–868 (1990).
  2. M. Tachibana, R. I. Laming, P. R. Morkel, and D. N. Payne, “Erbium-doped fiber amplifier with flattened gain spectrum,” IEEE Photonics Technol. Lett. 3, 118–120 (1991).
  3. A. E. Willner and S.-M. Hwang, “Transmission of many WDM channels through a cascade of EDFA’s in long distance links and ring networks,” J. Lightwave Technol. 5, 802–816 (1995).
  4. G. K. Chang, G. Ellinas, J. K. Gamelin, M. Z. Iqbal, and C. A. Brackett, “Multiwavelength reconfigurable WDM/ATM/SONET network testbed,” J. Lightwave Technol. 14, 1320–1340 (1996).
  5. R. E. Wagner, R. C. Alferness, A. A. M. Saleh, and M. S. Goodman, “MONET: multiwavelength optical networking,” J. Lightwave Technol. 14, 1349–1355 (1996).
  6. L. Eskildsen, E. Goldstein, V. da Silva, M. Andrejco, and Y. Silberberg, “Optical power equalization for multiwavelength fiber-amplifier cascades using periodic inhomogeneous broadening,” IEEE Photonics Technol. Lett. 5, 1188–1190 (1993).
  7. K. Inoue, T. Kominato, and H. Toba, “Tunable gain equalization using a Mach–Zehnder optical filter in multistage fiber amplifiers,” IEEE Photonics Technol. Lett. 3, 718–720 (1991).
  8. F. Su, R. Olshansky, G. Joyce, D. A. Smith, and J. E. Baran, “Gain equalization in multiwavelength lightwave systems using acoustooptic tunable filters,” IEEE Photonics Technol. Lett. 4, 269–271 (1992).
  9. F. Khaleghi, M. Kavehrad, and C. Barnard, “Tunable coherent optical transversal EDFA gain equalization,” J. Lightwave Technol. 13, 581–587 (1995).
  10. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
  11. W. A. Schroeder, T. S. Stark, M. D. Dawson, T. F. Boggess, and A. L. Smirl, “Picosecond separation and measurement of coexisting photorefractive, bound-electronic, and free-carrier grating dynamics in GaAs,” Opt. Lett. 16, 159–161 (1991).
  12. P. Yeh, “Contra-directional two-wave mixing in photorefractive media,” Opt. Commun. 45, 323–326 (1983).
  13. W. Chen and D. L. Mills, “Optical response of a nonlinear dielectric film,” Phys. Rev. B 35, 524–532 (1987).
  14. W. K. Chan and D. R. Andersen, “Analysis of a photorefractive Fabry–Perot etalon with strong coupling,” J. Appl. Phys. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited