OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 7 — Jul. 1, 2001
  • pp: 954–959

Forces and equilibrium states between interacting vector solitons

Jacob Scheuer and Meir Orenstein  »View Author Affiliations


JOSA B, Vol. 18, Issue 7, pp. 954-959 (2001)
http://dx.doi.org/10.1364/JOSAB.18.000954


View Full Text Article

Acrobat PDF (288 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A perturbation theory is developed for vector solitons, based on the derivation of the adiabatic evolution of the vector–soliton parameters under a generic perturbation. This perturbation theory was used to describe interactions between vector solitons and the related intersoliton forces. Some specific cases were analyzed that showed the dynamics under the mixture of coherent and incoherent forces characterizing the vector–soliton interactions.

© 2001 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

Citation
Jacob Scheuer and Meir Orenstein, "Forces and equilibrium states between interacting vector solitons," J. Opt. Soc. Am. B 18, 954-959 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-7-954


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–481 (1964).
  2. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Appl. Phys. Lett. 45, 1095–1097 (1980).
  3. V. I. Karpman and E. M. Maslov, “Perturbation theory for solitons,” Sov. Phys. JETP 34, 62–84 (1977).
  4. D. J. Kaup and N. C. Newell, “Solitons as particles, oscillators, and in slowly changing media: a singular perturbation theory,” Proc. R. Soc. London, Ser. A 361, 413–446 (1978).
  5. H. A. Haus and Y. Lai, “Quantum theory of soliton squeezing: a linearized approach,” J. Opt. Soc. Am. B 7, 386–392 (1990).
  6. S. V. Manakov, “On the theory of two-dimensional stationary self focussing of electromagnetic waves,” JETP 38, 246–252 (1974).
  7. M. R. Gupta, B. K. Som, and B. Dasgupta, “Coupled nonlinear Schrodinger equations for Langmuir and electromagnetic waves and extension of their modulational instability domain,” J. Plasma Phys. 25, 499–507 (1981).
  8. A. L. Berkhoer and V. E. Zakharov, “Self excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP 31, 486–494 (1970).
  9. C. R. Menyuk, “Nonlinear pulse propagation in birefringent optical fibers,” IEEE J. Quantum Electron. 23, 174–176 (1987).
  10. S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization multiplexing with solitons,” J. Lightwave Technol. 10, 28–35 (1992).
  11. M. Midrio, S. Wabnitz, and P. Franco, “Perturbation theory for coupled nonlinear Schrodinger equations,” Phys. Rev. E 54, 5743–5751 (1996).
  12. D. J. Muraki and W. L. Kath, “Polarization dynamics for solitons in birefringent optical fibers,” Phys. Lett. A 139, 379–381 (1989).
  13. F. S. Locati, M. Romagnoli, A. Tajani, and S. Wabnitz, “Nonlinear nonreciprocity of soliton amplification with erbium-doped fibers,” Opt. Lett. 17, 1213–1215 (1992).
  14. A. B. Aceves and S. Wabnitz, “Switching dynamics of helical solitons in a periodically twisted birefringent fiber filter,” Opt. Lett. 17, 25–27 (1992).
  15. E. Caglioti, S. Trillo, S. Wabnitz, B. Crosignani, and P. Di-Porto, “Finite-dimensional description of nonlinear pulse propagation in optical-fiber couplers with applications to soliton switching,” J. Opt. Soc. Am. B 7, 374–385 (1990).
  16. J. Yang, “Multisoliton perturbation theory for the Manakov equations and its applications in nonlinear optics,” Phys. Rev. E 59, 2393–2405 (1999).
  17. B. A. Malomed and S. Wabnitz, “Soliton annihilation and fusion from resonant inelastic collisions in birefringent optical fibers,” Opt. Lett. 16, 1388–1390 (1991).
  18. T. Ueda and W. L. Kath, “Dynamics of coupled solitons in nonlinear optical fibers,” Phys. Rev. A 42, 563–571 (1990).
  19. B. A. Malomed, “Polarization dynamics and interactions of solitons in a birefringent optical fiber,” Phys. Rev. A 43, 410–423 (1991).
  20. C. Sophocleous and D. F. Parker, “Pulse collisions and polarisation conversion for optical fibers,” Opt. Commun. 112, 214–224 (1994).
  21. E. A. Ostrovskaya, Y. S. Kivshar, Z. Chen, and M. Segev, “Interaction between vector solitons and solitonic gluons,” Opt. Lett. 24, 327–329 (1999).
  22. D. N. Christodoulides, S. R. Singh, M. I. Carvalho, and M. Segev, “Incoherently coupled soliton pairs in biased photorefractive crystals,” Appl. Phys. Lett. 68, 1763–1765 (1996).
  23. Z. Chen, M. Segev, T. H. Coskun, D. N. Christodoulides, Y. S. Kivshar, and V. V. Afanasjev, “Coupled photorefractive spatial-soliton pairs,” J. Opt. Soc. Am. B 14, 3066–3077 (1997).
  24. D. De Angelis and S. Wabnitz, “Interactions of orthogonally polarized solitons in optical fibers,” Opt. Commun. 125, 186–196 (1996).
  25. B. A. Malomed and R. S. Tasgal, “Internal vibrations of a vector soliton in the coupled nonlinear Schrodinger equations,” Phys. Rev. E 58, 2564–2575 (1998).
  26. J. P. Gordon, “Interaction forces among solitons in optical fibers,” Opt. Lett. 8, 596–598 (1983).
  27. J. Scheuer and M. Orenstein, “Interactions and switching of coherent,” Opt. Lett. 24, 1735–1737 (1999).
  28. M. Karlsson, D. Anderson, A. Höök, and M. Lisak, “A variational approach to optical soliton collisions,” Phys. Scr. 50, 265–270 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited