OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 7 — Jul. 1, 2001
  • pp: 989–993

Amorphous silicon nitride microcavities

Ali Serpengüzel  »View Author Affiliations

JOSA B, Vol. 18, Issue 7, pp. 989-993 (2001)

View Full Text Article

Acrobat PDF (180 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Amorphous silicon nitride microcavities were fabricated by use of distributed Bragg reflectors. The distributed Bragg reflectors were fabricated with alternating layers of quarter-wavelength-thick hydrogenated amorphous silicon nitride and amorphous silicon oxide. The spectral peak of the bulk amorphous silicon nitride photoluminescence spectrum was chosen as the microcavity resonance wavelength. The amorphous silicon nitride microcavity enhances the photoluminescence amplitude and reduces the photoluminescence linewidth with respect to the bulk amorphous silicon nitride. This narrowing and enhancement of the photoluminescence can be understood by the redistribution of the density of optical modes owing to the presence of the microcavity. The microcavity narrowing and enhancement of luminescence in hydrogenated amorphous silicon nitride opens up a variety of possibilities for optoelectronic applications such as resonant-cavity-enhanced light-emitting diodes and color flat-panel displays.

© 2001 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(250.5230) Optoelectronics : Photoluminescence
(310.0310) Thin films : Thin films

Ali Serpengüzel, "Amorphous silicon nitride microcavities," J. Opt. Soc. Am. B 18, 989-993 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. Rarity and C. Weisbuch, eds., Microcavities and Photonic Bandgaps: Physics and Applications (Kluwer Academic, Dordrecht, The Netherlands, 1996).
  2. R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  3. D. G. Lidzey, D. D. C. Bradley, S. J. Martin, and M. A. Pate, “Pixelated multicolor microcavity displays,” IEEE J. Sel. Top. Quantum Electron. 4, 113–118 (1998).
  4. H. Yokoyama and K. Ujihara, eds., Spontaneous Emission and Laser Oscillation in Microcavities (CRC Press, Boca Raton, Fla., 1995).
  5. M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
  6. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part I. Basic concepts and analytical trends,” IEEE J. Sel. Top. Quantum Electron. 34, 1612–1631 (1998).
  7. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction. Part II. Selected exact simulations and role of photon recycling,” IEEE J. Sel. Top. Quantum Electron. 34, 1632–1643 (1998).
  8. R. E. Slusher and C. Weisbuch, “Optical microcavities in condensed matter systems,” Solid State Commun. 92, 149–158 (1994).
  9. H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, “Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities,” Opt. Quantum Electron. 24, S245–S272 (1992).
  10. Y. Yamamoto, S. Machida, and G. Björk, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 657–668 (1991).
  11. J. V. Sandusky and S. R. J. Brueck, “Observation of spontaneous emission microcavity effects in an external-cavity surface emitting laser structure,” Appl. Phys. Lett. 69, 3993–3995 (1996).
  12. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
  13. J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic wire laser,” Phys. Rev. Lett. 75, 2678–2681 (1995).
  14. E. F. Schubert, Y.-H. Wang, A. Y. Cho, L. W. Tu, and G. J. Zydzik, “Resonant cavity light emitting diode,” Appl. Phys. Lett. 60, 921–923 (1992).
  15. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  16. P. W. Milloni and P. L. Knight, “Spontaneous emission between mirrors,” Opt. Commun. 9, 119–122 (1973).
  17. F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, “Anomalous spontaneous emission time in a microscopic optical cavity,” Phys. Rev. Lett. 59, 2955–2958 (1987).
  18. H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814–2816 (1990).
  19. G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microstructures,” Phys. Rev. A 44, 669–681 (1991).
  20. M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol. 13, 645–669 (1998).
  21. Y. Zhu, J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory: analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990).
  22. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
  23. S. Pau, G. Björk, J. Jacobson, H. Cao, and Y. Yamamoto, “Microcavity exciton-polariton splitting in the linear regime,” Phys. Rev. B 51, 14437–14447 (1995).
  24. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046–1048 (1990).
  25. D. J. Lockwood, “Optical properties of porous silicon,” Solid State Commun. 92, 101–112 (1994).
  26. D. J. Wolford, B. A. Scoot, J. A. Reimer, and J. A. Bradley, “Efficient visible luminescence from hydrogenated amorphous silicon,” Physica B 117–118, 920–922 (1983).
  27. A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, “Low-loss polycrystalline silicon waveguides for silicon photonics,” J. Appl. Phys. 80, 6120–6123 (1996).
  28. A. Aydinli, A. Serpengüzel, and D. Vardar, “Visible photoluminescence from low temperature deposited hydrogenated amorphous silicon nitride,” Solid State Commun. 98, 273–277 (1996).
  29. A. Serpengüzel, A. Aydinli, and A. Bek, “Enhancement and inhibition of photoluminescence in hydrogenated amorphous silicon nitride microcavities,” Opt. Express 1, 108–113 (1997).
  30. A. Serpengüzel, A. Aydinli, and A. Bek, “Alteration of spontaneous emission in hydrogenated amorphous silicon ni-tride microcavities,” J. Non-Cryst. Solids 227–230, 1142–1145 (1998).
  31. A. Serpengüzel, A. Aydinli, A. Bek, and M. Güre, “Visible photoluminescence from planar amorphous silicon nitride microcavities,” J. Opt. Soc. Am. B 15, 2706–2711 (1998).
  32. M. H. Brodsky, “Quantum well model of the hydrogenated amorphous silicon,” Solid State Commun. 36, 55–59 (1980).
  33. M. Born and E. Wolf, Principles of Optics (Cambridge University, Cambridge, 1998), p. 51.
  34. R. Fisher, “Luminescence in amorphous semiconductors,” in Amorphous Semiconductors, M. H. Brodsky, ed. (Springer-Verlag, Berlin, 1985), pp. 159–187.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited