OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 8 — Aug. 1, 2001
  • pp: 1161–1165

Technique for locking a second-harmonic generation cavity with an electro-optic active nonlinear crystal

Cláudio L. Cesar  »View Author Affiliations

JOSA B, Vol. 18, Issue 8, pp. 1161-1165 (2001)

View Full Text Article

Acrobat PDF (136 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new technique for generating an error signal for locking a second-harmonic generation (SHG) enhancement cavity is presented. The calculations are developed within a linear system framework treated with a Laplace transform. The error-signal generation is based on FM sidebands, but it differs from the Pound–Drever–Hall technique by performing the modulation on the (assumed) electro-optic active nonlinear crystal in the cavity. This new technique for generating the error signal has some advantages over the former one in that (i) the shape of the error signal is independent of the relative phase of the rf signal between the photodiode and the local oscillator; (ii) it provides a handy, high-bandwidth actuator to improve the cavity lock, which can improve the average SHG power; and (iii) it decreases cost and complexity by not requiring an external electro-optical modulator. The specific case of SHG in KNbO3 is treated as an example of the feasibility of the technique.

© 2001 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(230.2090) Optical devices : Electro-optical devices
(230.5750) Optical devices : Resonators

Cláudio L. Cesar, "Technique for locking a second-harmonic generation cavity with an electro-optic active nonlinear crystal," J. Opt. Soc. Am. B 18, 1161-1165 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1988).
  2. See, for instance, the Web page of TuiOptics GmbH, http: //www.tuioptics.com.
  3. M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Ab-grall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84, 5496–5499 (2000).
  4. B. de Beauvoir, C. Schwob, O. Acef, L. Jozefowski, L. Hilico, F. Nez, L. Julien, A. Clairon, and F. Biraben, “Metrology of the hydrogen and deuterium atoms: determination of the Rydberg constant and Lamb shifts,” Eur. Phys. J. D 12, 61–93 (2000).
  5. P. Mohr and B. Taylor, “CODATA recommended values of the fundamental physical constants: 1998,” Rev. Mod. Phys. 72, 351–495 (2000).
  6. M. H. Holzscheiter, G. Bendiscioli, A. Bertin, G. Bollen, M. Bruschi, C. Cesar, M. Charlton, M. Corradini, D. DePedis, M. Doser, J. Eades, R. Fedelie, X. Feng, F. Galluccio, T. Goldman, J. S. Hangst, R. Hayano, D. Horvth, R. J. Hughes, N. S. P. King, K. Kirsebom, H. Knudsen, V. Lagomarsino, R. Landua, G. Laricchia, R. A. Lewis, E. Lodi-Rizzini, M. Macri, G. Manuzio, U. Marconi, M. R. Masullo, J. P. Merrison, S. P. Mller, G. L. Morgan, M. M. Nieto, M. Piccinini, R. Poggiani, A. Rotondi, G. Rouleau, P. Salvini, N. Semprini-Cesari, G. A. Smith, C. M. Surko, G. Testera, G. Torelli, E. Uggerhj, V. G. Vaccaro, L. Venturelli, A. Vitale, E. Widmann, T. Yamazaki, Y. Yamazaki, D. Zanello, and A. Zoccoli, “Antihydrogen production and precision experiments,” Nucl. Phys. B 56A, 336–348 (1997).
  7. G. Gabrielse, H. Kalinowsky, J. Wonho, T. W. Hänsch, C. Zimmermann, J. Walraven, T. Hijmans, W. Oelert, W. D. Phillips, S. L. Rolston, and D. Wineland, “The production and study of cold antihydrogen by the ATRAP collaboration,” CERN document SPSLC 96–23/I211, http://hussle.harvard.edu/%7Eatrap.
  8. C. L. Cesar, D. G. Fried, T. C. Killian, A. D. Polcyn, J. C. Sandberg, I. A. Yu, T. J. Greytak, D. Kleppner, and J. M. Doyle, “Two-photon spectroscopy of trapped atomic hydrogen,” Phys. Rev. Lett. 77, 255–258 (1996).
  9. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
  10. T. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
  11. As used, for instance, in the Coherent, Inc., 899-21 Ti:sapphire or dye laser.
  12. M. J. Lawrence, B. Willke, M. E. Husman, E. K. Gustafson, and R. L. Byer, “Dynamic response of a Fabry–Perot interferometer,” J. Opt. Soc. Am. B 16, 523–532 (1999).
  13. G. B. Arfken, Mathematical Methods for Physicists, 4th ed. (Academic, San Diego, Calif., 1995).
  14. M. Athans and P. L. Falb, Optimal Control (McGraw-Hill, New York, 1966).
  15. I. Biaggio, P. Kerdoc, L.-S. Wu, and P. Günter, “Refractive indices of orthorhombic KNbO3. II. Phase-matching configurations for nonlinear-optical interactions,” J. Opt. Soc. Am. B 9, 507–517 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited