OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 9 — Sep. 1, 2001
  • pp: 1297–1306

Theory and numerical simulation of nth-order cascaded Raman fiber lasers

Stuart D. Jackson and Paul H. Muir  »View Author Affiliations


JOSA B, Vol. 18, Issue 9, pp. 1297-1306 (2001)
http://dx.doi.org/10.1364/JOSAB.18.001297


View Full Text Article

Acrobat PDF (219 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using the classical treatment of the stimulated Raman-scattering process, we use a theoretical model to simulate the operation of an <i>n</i>th-order cascaded Raman fiber laser. We introduce the partial differential equations employed to describe the propagation and time dependence of the forward and reverse-propagating fields of an <i>n</i>th-order cascaded Raman fiber laser. Under steady-state conditions, these equations form the well-known system of first-order, nonlinear boundary-value ordinary differential equations, with separated boundary conditions. We solve this system of equations numerically with the use of mono-implicit Runge–Kutta methods within a defect-control framework. We consider cascaded Raman fiber lasers of orders 2 through 5 and examine the parameters that influence the operation of these devices. We also provide preliminary results on the investigation of a time-dependent model in which the pump power is assumed to vary periodically with time. The associated system of first-order, hyperbolic, partial differential equations is treated by employing a transverse method-of-lines algorithm; the time derivatives are discretized with a finite-difference scheme, yielding a large system of boundary-value ordinary differential equations. We establish that for sinusoidal modulation of the pump the Stokes cavity modes exhibit antiphase dynamics typical of a system of locally coupled nonlinear oscillators.

© 2001 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3550) Lasers and laser optics : Lasers, Raman
(190.4370) Nonlinear optics : Nonlinear optics, fibers

Citation
Stuart D. Jackson and Paul H. Muir, "Theory and numerical simulation of nth-order cascaded Raman fiber lasers," J. Opt. Soc. Am. B 18, 1297-1306 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-9-1297


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. AuYeung and A. Yariv, “Theory of cw Raman oscillation in optical fibers,” J. Opt. Soc. Am. 69, 803–807 (1979).
  2. P. Persephonis, S. V. Chernikov, and J. R. Taylor, “Cascaded CW Raman laser source 1.6–1.9 μm,” Electron. Lett. 32, 1486–1487 (1996).
  3. E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov, “CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre,” Electron. Lett. 33, 1542–1544 (1997).
  4. S. V. Chernikov, N. S. Platonov, D. V. Gapontsev, D. I. Chang, M. J. Guy, and J. R. Taylor, “Raman fibre laser operating at 1.24 μm,” Electron. Lett. 34, 680–681 (1998).
  5. V. I. Karpov, E. M. Dianov, V. M. Paramonov, O. I. Medvedkov, M. M. Bubnov, S. L. Semyonov, S. A. Vasiliev, V. N. Protopopov, O. N. Egorova, V. F. Hopin, A. N. Guryanov, M. P. Bachynski, and W. R. L. Clements, “Laser-diode-pumped phosphosilicate-fiber Raman laser with an output power of 1 W at 1.48 μm,” Opt. Lett. 24, 887–889 (1999).
  6. E. M. Dianov, I. A. Bufetov, M. M. Bubnov, M. V. Grekov, A. V. Shubin, S. A. Vasil’ev, O. I. Medvedkov, S. L. Semenov, O. N. Egorova, A. N. Gur’yanov, V. F. Khopin, M. V. Yashkov, D. Dvarelas, A. Iocco, D. Costantini, H. G. Limberger, and R.-P. Salathe, “Continuous-wave highly efficient phosphosilicate fibre-based Raman laser (λ=1.24 μm),” Kvant. Elektron. (Moscow) 29, 97–100 (1999).
  7. N. S. Kim, M. Prabhu, C. Li, J. Song, and K. Ueda, “1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fibre laser at 1064 nm and spectral continuum generation,” Opt. Commun. 176, 219–222 (2000).
  8. E. M. Dianov, I. A. Bufetov, M. M. Bubnov, M. V. Grekov, S. A. Vasilev, and O. I. Medvedkov, “Three-cascaded 1407-nm Raman laser based on phosphorous-doped silica fiber,” Opt. Lett. 25, 402–404 (2000).
  9. S. G. Grubb, T. Strasser, W. Y. Cheung, W. A. Reed, V. Mizrahi, T. Erdogan, P. J. Lemaire, A. M. Vengsarkar, and D. J. DiGiovanni, “High power, 1.48 μm cascaded Raman laser in germanosilicate fibers,” in Optical Amplifiers and Their Applications, Vol. 18 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 197–199.
  10. S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “1.4 W saturated output power from a fiber Raman amplifier,” in Optical Fiber Communication Conference, 1999, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 114–116.
  11. W. A. Reed, W. C. Coughran, and S. G. Grubb, “Numerical modelling of cascaded cw Raman fiber amplifiers and lasers,” in Optical Fiber Communication Conference, Vol. 8 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 107–108.
  12. A. Bertoni, “Analysis of the efficiency of a third order cascaded Raman operating at the wavelength of 1.24 μm,” Opt. Quantum Electron. 29, 1047–1058 (1997).
  13. A. Bertoni and G. C. Reali, “1.24-μm cascaded Raman laser for 1.31-μm Raman fiber amplifiers,” Appl. Phys. B 67, 5–10 (1998).
  14. G. Vareille, O. Audouin, and E. Desurive, “Numerical optimisation of power conversion efficiency in 1480 nm multi-Stokes Raman fibre lasers,” Electron. Lett. 34, 675–676 (1998).
  15. M. Rini, I. Cristiani, and V. Degiorgio, “Numerical modeling and optimization of cascaded CW Raman fiber lasers,” IEEE J. Quantum Electron. 36, 1117–1122 (2000).
  16. U. M. Ascher, R. M. M. Mattheij, and R. D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, Classics in Applied Mathematics Series (SIAM, Philadelphia, 1995).
  17. M. Lentini and V. Pereyra, “An adaptive finite difference solver for nonlinear two-point boundary problems with mild boundary layers,” SIAM J. Numer. Anal. 14, 94–111 (1977).
  18. U. M. Ascher, J. Christiansen, and R. D. Russell, “Collocation software for boundary value ODE’s,” ACM Trans. Math. Software 7, 209–222 (1981).
  19. G. Bader and U. M. Ascher, “A new basis implementation for a mixed order boundary value ODE solver,” SIAM J. Sci. Stat. Comput. 8, 483–500 (1987).
  20. J. R. Cash and M. H. Wright, “A deferred correction method for nonlinear two-point boundary value problems: implementation and numerical evaluation,” SIAM J. Sci. Stat. Comput. 12, 971–989 (1991).
  21. W. H. Enright and P. H. Muir, “Runge–Kutta software with defect control for boundary value ODE’s,” SIAM J. Sci. Stat. Comput. 17, 479–497 (1996).
  22. www.netlib.org.
  23. P. H. Muir, “Optimal discrete and continuous mono-implicit Runge–Kutta schemes for BVODE’s,” Adv. Comput. Math. 10, 135–167 (1999).
  24. P. Amodio, J. R. Cash, G. Roussos, R. W. Wright, G. Fairweather, I. Gladwell, G. L. Kraut, and M. Paprzycki, “Almost block diagonal linear systems: sequential and parallel solution techniques, and applications,” Numer. Linear Algebra Appl. 7, 275–317 (2000).
  25. J. C. Diaz, G. Fairweather, and P. Keast, “Algorithm 603. COLROW and ARCECO: FORTRAN packages for solving certain almost block diagonal linear systems by modified alternate row and column elimination,” ACM Trans. Math. Software 9, 376–380 (1983).
  26. J. C. Diaz, G. Fairweather, and P. Keast, “FORTRAN packages for solving certain almost block diagonal linear systems by modified alternate row and column elimination,” ACM Trans. Math. Software 9, 358–375 (1983).
  27. W. H. Enright and P. H. Muir, “A Runge–Kutta type boundary value ODE solver with defect control,” Dept. Comput. Sci. Tech. Rep. 93–267 (University of Toronto, Toronto, Onatario, Canada, 1993) (http://www.cs.toronto.edu/NA/reports.html#cs-93–267).
  28. M. Prabhu, N. S. Kim, L. Jianren, and K. Ueda, “Simultaneous two-color CW Raman fiber laser with maximum output power of 1.05 W/1239 nm and 0.95 W/1484 nm using phosphosilicate fiber,” Opt. Commun. 182, 305–309 (2000).
  29. D. I. Chang, M. Y. Jeon, H. K. Lee, and K. H. Kim, “1480~1485 nm cascaded CW Raman fiber laser,” in Conference on Lasers and Electro-Optics, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 302.
  30. C. Szwaj, S. Bielawski, and D. Derozier, “Propagation of waves in the spectrum of a multimode laser,” Phys. Rev. Lett. 77, 4540–4543 (1996).
  31. C. Szwaj, S. Bielawski, and D. Derozier, “Acoustical and optical branches in the spectral waves of a laser,” Phys. Rev. A 57, 3022–3027 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited