OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 9 — Sep. 1, 2001
  • pp: 1362–1368

Methods for controlling positions of guided modes of photonic-crystal waveguides

Marko Lončar, Jelena Vučković, and Axel Scherer  »View Author Affiliations

JOSA B, Vol. 18, Issue 9, pp. 1362-1368 (2001)

View Full Text Article

Acrobat PDF (1208 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze different methods for controlling positions of guided modes of planar photonic-crystal waveguides. Methods based both on rearrangements of holes in the photonic-crystal lattice and on changes of hole sizes are presented. The ability to tune frequencies of guided modes within a frequency bandgap is necessary to achieve efficient guiding of light within a waveguide, as well as to match frequencies of eigenmodes of different photonic-crystal-based devices for the purpose of good coupling between them. We observe and explain the appearance of acceptor-type modes in donor-type waveguides.

© 2001 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(230.3990) Optical devices : Micro-optical devices
(230.7390) Optical devices : Waveguides, planar
(250.0250) Optoelectronics : Optoelectronics
(250.5300) Optoelectronics : Photonic integrated circuits

Marko Lončar, Jelena Vučković, and Axel Scherer, "Methods for controlling positions of guided modes of photonic-crystal waveguides," J. Opt. Soc. Am. B 18, 1362-1368 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
  2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University, Princeton, NJ, 1995).
  3. T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383, 692–702 (1996).
  4. S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
  5. R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band-gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753–4755 (1994).
  6. A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
  7. A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
  8. S. Kuchinsky, D. C. Allen, N. F. Borelli, and J. C. Cotteverte, “3D localization in a channel waveguide in a photonic crystal with 2D periodicity,” Opt. Commun. 175, 147–152 (2000).
  9. S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
  10. M. Lončar, T. Doll, J. Vučković, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402–1411 (2000).
  11. T. Sondergaard, A. Bjarklev, M. Kristensen, J. Erland, and J. Broeng, “Designing finite-height two-dimensional photonic crystal waveguides,” Appl. Phys. Lett. 77, 785–787 (2000).
  12. M. D. B. Charlton, S. W. Roberts, and G. J. Parker, “Guided mode analysis, and fabrication of a 2-dimensional visible photonic band structure confined within a planar semiconductor waveguide,” Mater. Sci. Eng., B 49, 155–165 (1997).
  13. A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, “Design of photonic crystal optical waveguides with singlemode propagation in the photonic bandgap,” Electron. Lett. 36, 1376–1378 (2000).
  14. T. Baba, N. Fukaya, and J. Yonekura, “Observation of light propagation in photonic crystal optical waveguides with bends,” Electron. Lett. 35, 654–655 (1999).
  15. M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
  16. M. Lončar, D. Nedeljković, T. Doll, J. Vučković, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
  17. S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, “Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-μm wavelength,” Opt. Lett. 25, 1297–1299 (2000).
  18. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).
  19. S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
  20. Y. Xu, R. K. Lee, and A. Yariv, “Adiabatic coupling between conventional dielectric waveguides and waveguides with discrete translational symmetry,” Opt. Lett. 25, 755–757 (2000).
  21. H. Benisty, “Modal analysis of optical guides with two-dimensional photonic band-gap boundaries,” J. Appl. Phys. 79, 7483–7492 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited