OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 1 — Jan. 1, 2002
  • pp: 125–141

Cavity ring-down polarimetry (CRDP): theoretical and experimental characterization

Thomas Müller, Kenneth B. Wiberg, Patrick H. Vaccaro, James R. Cheeseman, and Michael J. Frisch  »View Author Affiliations

JOSA B, Vol. 19, Issue 1, pp. 125-141 (2002)

View Full Text Article

Acrobat PDF (364 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Detailed theoretical analyses are presented for cavity ring-down polarimetry, a recently developed scheme for probing circular birefringence (nonresonant rotatory dispersion) and circular dichroism (resonant differential absorption) with unprecedented sensitivity. Aside from elucidating the nature of time-resolved signals generated by various modes of operation, the influence of instrumental imperfections on polarimetric response is examined. The unique ability of cavity ring-down polarimetry to interrogate nonresonant optical activity in low-pressure chiral vapors is demonstrated by extracting specific rotation parameters at two complementary excitation wavelengths (355 nm and 633 nm) for gaseous samples of α-pinene, β-pinene, and cis-pinane. The resulting isolated-molecule properties are contrasted with those derived from conventional solution-phase experiments and state-of-the-art ab initio calculations.

© 2002 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.5440) Optical devices : Polarization-selective devices
(300.6390) Spectroscopy : Spectroscopy, molecular

Thomas Müller, Kenneth B. Wiberg, Patrick H. Vaccaro, James R. Cheeseman, and Michael J. Frisch, "Cavity ring-down polarimetry (CRDP): theoretical and experimental characterization," J. Opt. Soc. Am. B 19, 125-141 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. T. Müller, K. B. Wiberg, and P. H. Vaccaro, “Cavity ring-down polarimetry (CRDP): a new scheme for probing circular birefringence and circular dichroism in the gas phase,” J. Phys. Chem. A 104, 5959–5968 (2000).
  2. A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
  3. P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
  4. J. J. Scherer, J. B. Paul, A. O’Keefe, and R. J. Saykally, “Cavity ring-down laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
  5. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc., Faraday Trans. 94, 337–351 (1998).
  6. E. L. Eliel and S. H. Wilen, Stereochemistry of Organic Compounds (Wiley, New York, 1994).
  7. K. Mislow, “Molecular chirality,” Top. Stereochem. 22, 1–82 (1999).
  8. O. Schnepp, S. Allen, and E. F. Pearson, “The measurement of circular dichroism in the vacuum ultraviolet,” Rev. Sci. Instrum. 41, 1136–1141 (1970).
  9. W. C. Johnson, “A circular dichroism spectrometer for the vacuum ultraviolet,” Rev. Sci. Instrum. 42, 1283–1286 (1971).
  10. M. G. Mason and O. Schnepp, “Absorption and circular dichroism spectra of ethylenic chromophores: trans-cyclooctene, α- and β-pinene,” J. Chem. Phys. 59, 1092–1098 (1973).
  11. K. P. Gross and O. Schnepp, “Circular dichroism spectra of straight chain mono-olefins. Assignment of ethylene transitions,” Chem. Phys. Lett. 36, 531–535 (1975).
  12. M. Levi, D. Cohen, V. Schurig, H. Basch, and A. Gedanken, “Circular dichroism of an optically active olefin chromophore: (R)-3-methylcyclopentene,” J. Am. Chem. Soc. 102, 6972–6975 (1980).
  13. P. L. Polavarapu and D. F. Michalska, “Vibrational circular dichroism in (S)-(−)-epoxypropane. Measurement in vapor phase and verification of the perturbed degenerate mode theory,” J. Am. Chem. Soc. 105, 6190–6191 (1983).
  14. P. J. Stephens and M. A. Lowe, “Vibrational circular dichroism,” Annu. Rev. Phys. Chem. 36, 213–241 (1985).
  15. T. B. Freedman, K. M. Spencer, C. McCarthy, S. J. Cianciosi, J. E. Baldwin, L. A. Nafie, J. A. Moore, and J. M. Schwab, “Vibrational circular dichroism of simple chiral molecules in the gas phase,” Proc. SPIE 1145, 273–274 (1989).
  16. L. A. Nafie, “Infrared and Raman vibrational optical activity: theoretical and experimental aspects,” Annu. Rev. Phys. Chem. 48, 357–386 (1997).
  17. J.-B. Biot, “Mémoire sur les rotations que certains substances impriment aux axes de polarisation des rayons lumineux,” Mém. Acad. R. Sci. Inst. France 2, 41–136 (1817).
  18. D. Gernez, “Recherches sur le pouvoir rotatoire des liquides actifs et de leurs vapeurs,” Ann. Sci. Éc. Norm. Sup. 1, 1–38 (1864).
  19. P.-A. Guye and A.-P. do Amaral, “Pouvoirs rotatoires de quelques derivés amyliques à l’état liquide et à l’état de vapeur,” Arch. Sci. Phys. Nat. 33, 513–529 (1895).
  20. T. M. Lowry and H. K. Gore, “Optical rotatory power of vapours. Part I. Rotatory dispersion of camphor and of camphorquinone, especially in the region of absorption,” Proc. R. Soc. London, Ser. A 135, 13–22 (1932).
  21. R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization dependent cavity ring down spectroscopy,” J. Chem. Phys. 107, 4458–4467 (1997).
  22. L. D. Barron, “Fundamental symmetry aspects of molecular chirality,” in New Developments in Molecular Chirality, P. G. Mezey, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1991), Vol. 5, pp. 1–55.
  23. J. Poirson, M. Vallet, F. Bretenaker, A. Le Floch, and J.-Y. Thépot, “Resonant cavity gas-phase polarimeter,” Anal. Chem. 70, 4636–4639 (1998).
  24. H. Mueller, “The foundation of optics,” J. Opt. Soc. Am. 38, 661 (1948).
  25. M. J. Walker, “Matrix calculus and the Stokes parameters of polarized radiation,” Am. J. Phys. 22, 170–174 (1954).
  26. W. A. Shurcliff, Polarized Light: Production and Use (Harvard University, Cambridge, Mass., 1962).
  27. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, Boston, 1990).
  28. R. J. Jones, “New calculus for the treatment of optical systems. I. Description and discussion of the calculus,” J. Opt. Soc. Am. 31, 488–493 (1941).
  29. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, New York, 1998).
  30. P. W. Milonni and J. H. Eberly, Lasers (Wiley, New York, 1988).
  31. J. Schellman and H. P. Jensen, “Optical spectroscopy of oriented molecules,” Chem. Rev. 87, 1359–1399 (1987).
  32. C. Diping, R. A. Goldbeck, S. W. McCauley, and D. S. Kliger, “Optical analysis of an ellipsometric technique for time-resolved magnetic circular dichroism spectroscopy,” J. Phys. Chem. 98, 3601–3611 (1994).
  33. G. R. Fowles, Introduction to Modern Optics, 2nd ed. (Holt, Rinehart & Winston, New York, 1975).
  34. D. Romanini and K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Phys. Chem. 99, 6287–6301 (1993).
  35. H. Naus and W. Ubachs, “Experimental verification of Rayleigh scattering cross sections,” Opt. Lett. 25, 347–349 (2000).
  36. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).
  37. D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring-down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
  38. E. U. Condon, “Theories of optical rotatory power,” Rev. Mod. Phys. 9, 432–457 (1937).
  39. P. Crabbé, Optical Rotatory Dispersion and Circular Dichroism in Organic Chemistry (Holden-Day, San Francisco, Calif., 1965).
  40. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry (VCH, Weinheim, 1988).
  41. P. J. Stephens, F. J. Devlin, J. R. Cheeseman, and M. J. Frisch, “The calculation of optical rotation using density functional theory,” J. Phys. Chem. A 105, 5356–5371 (2001).
  42. F. J. Devlin, P. J. Stephens, J. R. Cheeseman, and M. J. Frisch, “Ab initio prediction of vibrational absorption and circular dichroism spectra of chiral natural products using density functional theory: α-pinene,” J. Phys. Chem. A 101, 9912–9924 (1997).
  43. W. Koch and W. C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, Weinheim, 2000).
  44. J. R. Cheeseman, M. J. Frisch, F. J. Devlin, and P. J. Stephens (to be published).
  45. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, A. G. Baboul, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 99, Development Version (Revision B.04) (Gaussian, Inc., Pittsburgh, Pa., 1998).
  46. J. R. Cheeseman, M. J. Frisch, F. J. Devlin, and P. J. Stephens, “Hartree–Fock density functional theory ab initio calculation of optical rotation using GIAOs: basis set dependence,” J. Phys. Chem. A 104, 1039–1046 (2000).
  47. T. Müller, K. B. Wiberg, and P. H. Vaccaro (unpublished results).
  48. C. Wohlfarth and B. Wohlfarth, “Subvolume B: optical constants,” in Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology (New Series), M. D. Lechner, ed. (Springer-Verlag, Berlin, 1961), Group III: Condensed Matter, Vol. 38, p. 127.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited