OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 1 — Jan. 1, 2002
  • pp: 18–27

Characterization of the laser crystal Nd:GdVO4

Huaijin Zhang, Junhai Liu, Jiyang Wang, Changqing Wang, Li Zhu, Zongshu Shao, Xianlin Meng, Xiaobo Hu, Minhua Jiang, and Yuk Tak Chow  »View Author Affiliations


JOSA B, Vol. 19, Issue 1, pp. 18-27 (2002)
http://dx.doi.org/10.1364/JOSAB.19.000018


View Full Text Article

Enhanced HTML    Acrobat PDF (249 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nd:GdVO4 crystal was grown by the Czochralski method. The absorption and fluorescence spectra of the crystal were measured at room temperature. The thermal expansion and the specific heat of the crystal were also measured. Laser outputs at 1.06 and 1.34 µm were achieved when a Nd:GdVO4 crystal sample with a high Nd doping concentration was pumped by a low-power laser diode (LD) at 808.5 nm, and visible green and red laser outputs of intracavity frequency doubling at 0.53 and 0.67 µm were also achieved when nonlinear KTiOPO4 and LiB3O5 crystal, respectively, were used. The highly Nd-doped Nd:GdVO4 crystal was pumped by a high-power LD, and a greater than 5-W laser output power at 1.06 µm was obtained. A low-Nd-doping concentration Nd:GdVO4 crystal sample was pumped by a high-power LD, yielding laser output powers at 1.06 and 0.53 µm; 0.53-µm green laser output was obtained when a KTiOPO4 crystal was used, and the output beam’s values were M2=1.76 at an output power of 14.3 W at 1.06 µm and M2=1.55 at an output power of 3.3 W at 0.53 µm. Acousto-optical Q-switched laser outputs at 1.06 and 0.53 µm were also achieved. A thermal lens made from a Nd:GdVO4 crystal was measured; it was weaker than that of a Nd:YVO4 crystal. Some important material parameters, such as temperature-induced changes in refractive index, material constant, thermal-stress resistance figure of merit, and power per unit length at the stress fracture limit, have been estimated.

© 2002 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(160.0160) Materials : Materials

Citation
Huaijin Zhang, Junhai Liu, Jiyang Wang, Changqing Wang, Li Zhu, Zongshu Shao, Xianlin Meng, Xiaobo Hu, Minhua Jiang, and Yuk Tak Chow, "Characterization of the laser crystal Nd:GdVO4," J. Opt. Soc. Am. B 19, 18-27 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-1-18


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. R. O’Connor, “Unusual crystal-field energy levels and efficient laser properties of YVO4:Nd,” Appl. Phys. Lett. 9, 407–409 (1966). [CrossRef]
  2. A. W. Tucher, M. Birnbaum, C. L. Fincher, and L. G. Deshazer, “Continuous-wave operation of Nd:YVO4 at 1.06 and 1.34 μm,” J. Appl. Phys. 47, 232–234 (1976). [CrossRef]
  3. A. W. Tucher, M. Birebaun, C. L. Fincher, and J. W. Erler, “Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4,” J. Appl. Phys. 48, 4907–4911 (1977). [CrossRef]
  4. R. A. Fielfs, M. Birnbaun, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett. 51, 1885–1886 (1987). [CrossRef]
  5. T. Izawa, R. Uchimura, S. Matsui, T. Arichi, and T. Yakouh, “Efficient diode bar-pumped intracavity-doubled Nd:YVO4 laser using stacked-glass plate beam shaper,” in Conference on Lasers and Electro-Optics (CLEO/U.S.), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper CThA1.
  6. U. Nebel, B. Ruffing and R. Wallenstein, “A high power diode-pumped all-solid-state RGB laser source,” in Conference on Lasers and Electro-Optics (CLEO/U.S.), Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. CPD3–1–CPD3–3.
  7. A. I. Zagmennyi, V. G. Ostromov, I. A. Shcherbarkov, T. Jensen, J.-P. Meyn, and G. Huber, “The Nd:GdVO4 crystal: a new material for diode pumped lasers,” Sov. J. Quantum Electron. 22, 1071–1072 (1992). [CrossRef]
  8. T. Jensen, V. G. Ostroumov, J.-P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Scherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994). [CrossRef]
  9. K. Shimamura, S. Uda, V. V. Kochurikhin, T. Taniuchi, and T. Fukuda, “Growth and characterization of gadolinium vanadate GdVO4 single crystal for laser applications,” Jpn. J. Appl. Phys. 35, 1832–1835 (1996). [CrossRef]
  10. H. J. Zhang, X. L. Meng, L. Zhu, H. Z. Zhang, P. Wang, J. Dawes, C. Q. Wang, Y. T. Chow, “Investigation on the growth and laser properties of Nd:GdVO4 single crystal,” Cryst. Res. Technol. 33, 801–806 (1998). [CrossRef]
  11. P. A. Studenikin, A. I. Zagumennyi, Yu. D. Zavartsev, P. A. Popov, and I. A. Shcherbakov, “GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Nd3+, Tm3+, and Er3+ ions,” Quantum Electron. 25, 1162–1165 (1995). [CrossRef]
  12. B. H. T. Chai, G. Loutts, J. Lefaucheur, X. X. Zhang, P. Hong, M. Bass, I. A. Shcherbakov, and A. I. Zagumennyi, “Comparison of laser performance of Nd-doped YVO4, GdVO4, Ca5(PO4)3F, Sr5(PO4)3F and Ca5(VO4)3F,” in Advanced Solid-State Lasers, T. Y. Fan and B. H. T. Chai, eds., Vol. 20 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1994), pp. 41–52.
  13. X. Meng, L. Zhu, H. Zhang, C. Wang, Y. T. Chow, and M. Lu, “Growth, morphology and laser properties of Nd:YVO4 crystal,” J. Cryst. Growth 200, 199–203 (1999). [CrossRef]
  14. Joint Committee for Power Diffraction Standards diffraction file: 17–260.
  15. H. Zhang, X. Meng, L. Zhu, C. Wang, Y. T. Chow, and M. Lu, “Growth, spectra and influence of annealing effect on laser properties of Nd:YVO4 crystal,” Opt. Mater. 14, 25–30 (2000). [CrossRef]
  16. J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahere, and R. L. Byer, “The slab geometry laser. I. Theory.” IEEE J. Quantum Electron. QE-20, 289–301 (1984). [CrossRef]
  17. D. Xiao and M. Wang, Crystal Physics (Sichuan U. Press, Chengdu, China, 1989; in Chinese), p. 3.
  18. X. Peng, A. Asundi, Y. Chen, and Z. Xiong, “Study of the mechanical properties of Nd:YVO4 crystal by use of laser interferometry and finite-element analysis,” Appl. Opt. 40, 1396–1403 (2001). [CrossRef]
  19. D. Xu, “Organic crystal,” in Science and Technology of Crystal Growth, K. C. Zhang and L. H. Zhang, eds. (Science Press, Beijing, 1997; in Chinese), p. 328.
  20. H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol. 34, 1011–1016 (1999). [CrossRef]
  21. T. Y. Fan and R. L. Byer, “Modeling and cw operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987). [CrossRef]
  22. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412–1423 (1988). [CrossRef]
  23. J. H. Zarrabi, P. Gavrilovic, and S. Singh, “Intracavity, frequency-doubled, miniaturized Nd:YAlO3 blue laser at 465 nm,” Appl. Phys. Lett. 67, 2439–2441 (1995). [CrossRef]
  24. P. Zeller and P. Peuser, “Efficient, multiwatt, continuous-wave laser operation on the 4F3/24I9/2 transitions of Nd:YVO4 and Nd:YAG,” Opt. Lett. 25, 34–36 (2000). [CrossRef]
  25. V. G. Ostroumov, J.-P. Meyn, T. Jensen, and G. Huber, “Neodymium-doped 1.3-μm and GVO laser and 1.4-μm YAG lasers,” in Conference on Laser and Electro-Optics, Vol. 15 of OSA 1995 Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper CWH6.
  26. Chr. P. Wyss, W. Luthy, H. P. Weber, V. L. Vlasov, Yu. D. Zavrtsev, P. A. Studenokin, and A. I. Zagumennyi, “Performance of a diode-pumped 5 W Nd3+:GdVO4 microchip laser at 1.06 μm,” Appl. Phys. B 68, 659–661 (1999). [CrossRef]
  27. Y.-F. Chen, “Design criteria for concentration optimization in scaling diode end-pumped lasers to high power: influence of thermal fracture,” IEEE J. Quantum Electron. 25, 234–239 (1999). [CrossRef]
  28. R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, “Cooling schemes for longitudinally diode laser-pumped Nd:YAG rpds,” IEEE J. Quantum Electron. 34, 1046–1053 (1998). [CrossRef]
  29. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet,” J. Opt. Soc. Am. B 3, 102–113 (1986). [CrossRef]
  30. A. Agnesi, S. Dell’Acqua, C. Pennacchio, G. Reali, and P. G. Gobbi, “High-repetition-rate Q-switched diode-pumped Nd:YAG laser at 1.444 μm,” Appl. Opt. 37, 3984–3986 (1998). [CrossRef]
  31. I. D. Lindsay and M. Ebrahimzdeh, “Efficient coutinous-wave and Q-switched operation of a 946-nm Nd:YAG laser pumped by an injection-locked broad-area diode laser,” Appl. Opt. 37, 3961–3970 (1998). [CrossRef]
  32. G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4 laser using a quadrupole electro-optic deflector,” Appl. Phys. B 67, 267–270 (1998). [CrossRef]
  33. J. Liu, J. Lu, J. Lu, Z. Shao, and M. Jiang, “Thermal lens determination of end-pumped solid-state lasers by a simple direct approach,” Chin. Phys. Lett. 16, 181–183 (1999). [CrossRef]
  34. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited