OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 1 — Jan. 1, 2002
  • pp: 63–74

Complex-cubic Ginzburg–Landau equation-based model for erbium-doped fiber-amplifier-supported nonreturn-to-zero communications

Nikos Efremidis and Kyriakos Hizanidis  »View Author Affiliations


JOSA B, Vol. 19, Issue 1, pp. 63-74 (2002)
http://dx.doi.org/10.1364/JOSAB.19.000063


View Full Text Article

Enhanced HTML    Acrobat PDF (345 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The propagation of nonreturn-to-zero pulses, composed by a superposition of two exact shock-wave solutions of a complex-cubic Ginzburg–Landau equation linearly coupled to a linear nondispersive equation, is studied in detail. The model describes the distributed (average) propagation in a dual-core erbium-doped fiber-amplifier-supported optical-fiber system where stabilization is achieved by means of short segments of an extra lossy core that is parallel and coupled to the main one. The linear-stability analysis of the two asymptotic states of the shock wave in combination with direct numerical simulations provide necessary conditions for optimal propagation of the nonreturn-to-zero pulse. The enhancement of the propagation distance by at least an order of magnitude, under a suitable choice of the parameters, establishes the beneficial role of the passive channel.

© 2002 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2410) Fiber optics and optical communications : Fibers, erbium
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

Citation
Nikos Efremidis and Kyriakos Hizanidis, "Complex-cubic Ginzburg–Landau equation-based model for erbium-doped fiber-amplifier-supported nonreturn-to-zero communications," J. Opt. Soc. Am. B 19, 63-74 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-1-63


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. S. Bergano, C. R. Davidson, G. M. Homsey, D. J. Kalmus, P. R. Trischitta, J. Aspell, D. A. Gray, R. L. Maybach, S. Yamamoto, H. Taga, N. Edagawa, Y. Yoshida, Y. Horiuchi, T. Kawazawa, Y. Namihira, and S. Akiba, “9000 km, 5 Gb/s NRZ transmission experiment using 274 erbium-doped fiber amplifiers,” in Optical Amplifiers and Their Applications, Vol. 14 of 1994 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1994), paper PD7.
  2. H. Taga, N. Edagawa, S. Yamamoto, and S. Akiba, “Recent progress in amplified undersea systems,” J. Lightwave Technol. 13, 829–834 (1995). [CrossRef]
  3. N. S. Bergano and C. R. Davidson, “Circulating loop transmission experiments for the study of long-haul transmission systems using erbium-doped fiber amplifiers,” J. Lightwave Technol. 13, 879–889 (1995). [CrossRef]
  4. H. Onaka, H. Miyata, G. Ishikawa, K. Otsuka, H. Ooi, Y. Kai, S. Kinoshita, M. Seino, H. Nishimoto, and T. Chikama, in Optical Amplifiers and Their Applications, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1996), paper PD19.
  5. N. S. Bergano, C. R. Davidson, D. L. Wilson, F. W. Kerfoot, M. D. Trembay, M. D. Levonas, J. P. Morreale, J. D. Evankow, P. C. Corbett, M. A. Mills, G. A. Ferguson, A. M. Vengsarkar, J. R. Pedrazzani, J. A. Nagel, J. L. Zyskind, and J. W. Sulhoff, in Optical Amplifiers and Their Applications, Vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1996), paper PD23.
  6. D. Marcuse, A. R. Chraplyvy, and R. W. Tkach, “Effect of fiber nonlinearity on long-distance transmission,” J. Lightwave Technol. 9, 121–124 (1991). [CrossRef]
  7. D. Marcuse, “RMS width of pulses in nonlinear dispersive fibers,” J. Lightwave Technol. 10, 17–21 (1992). [CrossRef]
  8. P. A. Bélanger and N. Bélanger, “Rms characteristics of pulses in nonlinear dispersive lossy fibers,” Opt. Commun. 117, 56–60 (1995). [CrossRef]
  9. Y. Kodama and S. Wabnitz, “Analytical theory of guiding center NRZ and RZ signal transmission in normally dispersive nonlinear optical fibers,” Opt. Lett. 20, 2291–2293 (1995). [CrossRef]
  10. Y. Kodama, A. Maruta, and S. Wabnitz, “Minimum channel spacing in wavelength-division-multiplexing nonreturn-to-zero optical fiber transmissions,” Opt. Lett. 21, 1815–1817 (1996). [CrossRef] [PubMed]
  11. Y. Kodama, S. Wabnitz, and K. Tanaka, “Control of nonreturn-to-zero signal distortion by nonlinear gain,” Opt. Lett. 21, 719–721 (1996). [CrossRef] [PubMed]
  12. E. Desurvire, Erbium-Doped Fiber Amplifiers (Wiley, New York, 1994).
  13. A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Oxford University, Oxford, UK, 1995).
  14. A. Mecozzi, J. D. Moores, H. A. Haus, and Y. Lai, “Soliton transmission control,” Opt. Lett. 16, 1841–1843 (1991). [CrossRef] [PubMed]
  15. Y. Kodama and A. Hasegawa, “Generation of asymptotically stable optical soliton and suppression of the Gordon–Haus effect,” Opt. Lett. 17, 31–33 (1992). [CrossRef] [PubMed]
  16. L. M. Hocking and K. Stewartson, “On the nonlinear response of a marginally unstable plane parallel flow to a two dimensional disturbance,” Proc. R. Soc. London, Ser. A 326, 289–313 (1972). [CrossRef]
  17. N. R. Pereira and L. Stenflo, “Nonlinear Schroedinger equation including growth and damping,” Phys. Fluids 20, 1733–1734 (1977). [CrossRef]
  18. K. Nozaki and N. Bekki, “Pattern selection and spatiotemporal transition in the Ginzburg–Landau equation,” Phys. Rev. Lett. 51, 2171–2174 (1983). [CrossRef]
  19. K. Nozaki and N. Bekki, “Exact solutions of the generalized Ginzburg–Landau equation,” J. Phys. Soc. Jpn. 53, 1581–1582 (1984). [CrossRef]
  20. B. A. Malomed and H. G. Winful, “Stable solitons in two-component active systems,” Phys. Rev. E 53, 5365–5368 (1996). [CrossRef]
  21. J. Atai and B. A. Malomed, “Stability and interactions of solitons in two-component active systems,” Phys. Rev. E 54, 4371–4374 (1996). [CrossRef]
  22. N. Efremidis, K. Hizanidis, B. A. Malomed, H. E. Nistazakis, and D. J. Frantzeskakis, “Stabilizing the Pereira–Stenflo solitons in nonlinear optical fibers,” Phys. Scr. T84, 18–21 (2000). [CrossRef]
  23. N. Efremidis, K. Hizanidis, B. A. Malomed, H. E. Nistazakis, and D. J. Frantzeskakis, “Stable transmission of solitons in the region of normal dispersion,” J. Opt. Soc. Am. B 17, 952–958 (2000). [CrossRef]
  24. K. Hizanidis, N. Efremidis, A. Stavdas, D. J. Frantzeskakis, H. E. Nistazakis, and B. A. Malomed, “TDM and WDM with chirped solitons in optical transmission systems with distributed amplification,” in New Trends in Optical Soliton Transmission Systems, A. Hasegawa, ed. (Kluwer Academic, Dordrecht, the Netherlands, 2000), pp. 139–160.
  25. S. P. Craig-Ryan, B. J. Ainslie, and C. A. Millar, “Fabrication of long length of low excess loss erbium-doped optical fibre,” Electron. Lett. 26, 185–186 (1990). [CrossRef]
  26. J. R. Simpson, L. F. Mollenauer, K. S. Kranz, P. J. Lemaire, N. A. Olsson, H. T. Shang, and P. C. Becker, “A distributed erbium-doped fiber amplifier,” in Optical Fiber Communication, Vol. 1 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper PD19.
  27. J. R. Simpson, H. T. Shang, L. F. Mollenauer, N. A. Olsson, P. C. Becker, K. S. Kranz, P. J. Lemaire, and M. J. Neubelt, “Performance of a distributed erbium-doped dispersion-shifted fiber amplifier,” J. Lightwave Technol. 9, 228–233 (1991). [CrossRef]
  28. J. Atai and B. A. Malomed, “Exact stable pulses in asymmetric linearly coupled Ginzburg–Landau equations,” Phys. Lett. A 246, 412–422 (1998). [CrossRef]
  29. A. Hasegawa, “Generation of a train of soliton pulses by induced modulational instability in optical fibers,” Opt. Lett. 9, 288–290 (1984). [CrossRef] [PubMed]
  30. K. Tai, A. Tomita, and A. Hasegawa, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited