OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 1 — Jan. 1, 2002
  • pp: 7–17

Laser beam smoothing caused by the small-spatial-scale B integral

J. A. Marozas, S. P. Regan, J. H. Kelly, D. D. Meyerhofer, W. Seka, and S. Skupsky  »View Author Affiliations

JOSA B, Vol. 19, Issue 1, pp. 7-17 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (508 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Smoothing, caused by the small-spatial-scale B integral, was measured on the OMEGA laser (a high-power, solid-state laser used for inertial confinement fusion research) without applied bandwidth. The intrinsic nonuniformity of laser irradiation [i.e., irradiation without smoothing by spectral dispersion] was determined from fluence distributions in equivalent-target-plane images of beams with phase plates. These data are compared with simulations that include both small-spatial-scale and whole-beam B integrals. The nonuniformity decreases with increasing average intensity. High-intensity beams can acquire bandwidth as a result of the intensity-dependent phase accumulated in the laser chain. The far-field speckle pattern produced by a phase plate can shift as the near-field phase front changes, which decreases the nonuniformity. The far-field power spectrum is affected mainly in the high spatial frequencies, where it is not expected to mitigate hydrodynamic instabilities.

© 2002 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(030.6140) Coherence and statistical optics : Speckle
(190.5940) Nonlinear optics : Self-action effects
(350.2660) Other areas of optics : Fusion
(350.5500) Other areas of optics : Propagation

J. A. Marozas, S. P. Regan, J. H. Kelly, D. D. Meyerhofer, W. Seka, and S. Skupsky, "Laser beam smoothing caused by the small-spatial-scale B integral," J. Opt. Soc. Am. B 19, 7-17 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. P. Verdon, “High-performance direct-drive capsule designs for the National Ignition Facility,” Bull. Am. Phys. Soc. 38, 2010 (1993).
  2. S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, “Direct-drive laser fusion: status and prospects,” Phys. Plasmas 5, 1901–1918 (1998). [CrossRef]
  3. D. K. Bradley, J. A. Delettrez, and C. P. Verdon, “Measurements of the effect of laser beam smoothing on direct-drive inertial-confinement-fusion capsule implosions,” Phys. Rev. Lett. 68, 2774–2777 (1992). [CrossRef] [PubMed]
  4. J. Delettrez, D. K. Bradley, and C. P. Verdon, “The role of the Rayleigh–Taylor instability in laser-driven burnthrough experiments,” Phys. Plasmas 1, 2342–2349 (1994). [CrossRef]
  5. J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, “A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion,” Phys. Plasmas 1, 1379–1389 (1994). [CrossRef]
  6. R. Epstein, “Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation,” J. Appl. Phys. 82, 2123–2139 (1997). [CrossRef]
  7. V. A. Smalyuk, T. R. Boehly, D. K. Bradley, V. N. Goncharov, J. A. Delettrez, J. P. Knauer, D. D. Meyerhofer, D. Oron, and D. Shvarts, “Saturation of the Rayleigh-Taylor growth of broad-bandwidth laser-imposed nonuniformities in planar targets,” Phys. Rev. Lett. 81, 5342–5345 (1998). [CrossRef]
  8. F. J. Marshall and G. R. Bennett, “A high-energy x-ray microscope for inertial confinement fusion,” Rev. Sci. Instrum. 70, 617–619 (1999). [CrossRef]
  9. F. J. Marshall, J. A. Delettrez, V. Yu. Glebov, R. P. J. Town, B. Yaakobi, R. L. Kremens, and M. Cable, “Direct-drive, hollow-shell implosion studies on the 60-beam, UV OMEGA laser system,” Phys. Plasmas 7, 1006–1013 (2000). [CrossRef]
  10. T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, “Initial performance results of the OMEGA laser system,” Opt. Commun. 133, 495–506 (1997). [CrossRef]
  11. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989). [CrossRef]
  12. Laboratory for Laser Energetics, “Two-dimensional SSD on OMEGA,” LLE Review 69, pp. 1–10; NTIS Doc DOE/SF/19460–152(1996) (National Technical Information Service, Springfield, Va.).
  13. S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999). [CrossRef]
  14. J. E. Rothenberg, “Comparison of beam-smoothing methods for direct-drive inertial confinement fusion,” J. Opt. Soc. Am. B 14, 1664–1671 (1997). [CrossRef]
  15. T. J. Kessler, Y. Lin, J. J. Armstrong, and B. Velazquez, “Phase conversion of lasers with low-loss distributed phase plates,” in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds., Proc. SPIE 1870, 95–104 (1993).
  16. Y. Lin, T. J. Kessler, and G. N. Lawrence, “Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance,” Opt. Lett. 21, 1703–1705 (1996). [CrossRef] [PubMed]
  17. Y. Kato, Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan (personal communication, 1984).
  18. K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992). [CrossRef]
  19. K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, and S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993). [CrossRef]
  20. Laboratory for Laser Energetics, “Phase conversion using distributed polarization rotation,” LLE Review 45, pp. 1–12; NTIS Doc. DOE/DP40200–149(1990) (National Technical Information Service, Springfield, Va.).
  21. T. E. Gunderman, J.-C. Lee, T. J. Kessler, S. D. Jacobs, D. J. Smith, and S. Skupsky, “Liquid crystal distributed polarization rotator for improved uniformity of focused laser light,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 354.
  22. S. P. Regan, J. Marozas, J. H. Kelly, T. R. Boehly, W. R. Donaldson, P. A. Jaanimagi, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, W. Seka, S. Skupsky, and V. A. Smalyuk, “Experimental investigation of smoothing by spectral dispersion,” J. Opt. Soc. Am. B 17, 1483–1489 (2000). [CrossRef]
  23. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  24. D. C. Brown, “Glass laser physics,” in High-Peak-Power Nd: Glass Laser Systems, D. L. MacAdam, ed., Vol. 25 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1981).
  25. Inspired by Anishinaabe words waasikwa’ and waasikwa’an, meaning “polishes someone” and “polishes something” (respectively), as in smoothing a rough surface. See J. D. Nichols and E. Nyholm, A Concise Dictionary ofMinnesota Ojibwe (U. Minnesota Press, Minneapolis, Minn., 1995).
  26. D. Cortesi, “Topics in IRIX® Programming,” Doc. Number 007–2478–007 (Silicon Graphics, Mountain View, Calif., 1999).
  27. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  28. R. N. Bracewell, The Fourier Transform and Its Applications, 2nd Rev. ed., McGraw-Hill Series in Electrical Engineering. Circuits and Systems (McGraw-Hill, New York, 1986).
  29. J. G. Proakis and D. G. Manolakis, Introduction to Digital Signal Processing (Macmillan, New York, 1988).
  30. J. A. Marozas, “Angular spectrum representation of pulsed laser beams with two-dimensional smoothing by spectral dispersion,” LLE Review 78, pp. 62–81; NTIS doc. DOE/SF/19460–295(1999) (National Technical Information Service, Springfield, Va).
  31. B. Carlson, Communication Systems: An Introduction to Signals and Noise in Electrical Communication, McGraw-Hill Electrical and Electronic Engineering Series (McGraw-Hill, New York, 1968), p. 154.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited