Frequency conversion in one-dimensional stratified media with quadratic nonlinearity
JOSA B, Vol. 19, Issue 1, pp. 83-88 (2002)
http://dx.doi.org/10.1364/JOSAB.19.000083
Acrobat PDF (280 KB)
Abstract
We investigate the properties of layered media in the framework of frequency conversion. We detail guidelines to ensure phase matching among wavelength pairs within a broad wavelength range, and we show which conversion performance can be theoretically found.
© 2002 Optical Society of America
OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
Citation
Michele Midrio, Luciano Socci, and Marco Romagnoli, "Frequency conversion in one-dimensional stratified media with quadratic nonlinearity," J. Opt. Soc. Am. B 19, 83-88 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-1-83
Sort: Year | Journal | Reset
References
- N. Bloembergen and A. J. Sievers, “Nonlinear optical properties of periodic laminar structures,” Appl. Phys. Lett. 17, 483–485 (1970).
- S. Somekh and A. Yariv, “Phase-matchable nonlinear optical interactions in periodic thin films,” Appl. Phys. Lett. 21, 140–141 (1972).
- C. L. Tang and P. B. Bey, “Phase matching in second-harmonic generation using artificial periodic structures,” IEEE J. Quantum Electron. 9, 9–17 (1973).
- J. P. van der Ziel, M. Ilegemes, P. W. Foy, and R. M. Mikulyak, “Phase-matched second harmonic generation in a periodic AlGaAs waveguide,” Appl. Phys. Lett. 29, 775–777 (1976).
- M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997).
- A. V. Balakin, V. A. Bushuev, N. I. Koroteev, B. I. Mantsyzov, I. A. Ozheredov, A. P. Shkurinov, D. Boucher, and P. Masselin, “Enhancement of second-harmonic generation with femtosecond laser pulses near the photonic band edge for different polarizations of incident light,” Opt. Lett. 24, 793–795 (1999).
- M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891–4898 (1999).
- G. D’Aguanno, M. Centini, C. Sibilia, M. Bertolotti, M. Scalora, M. J. Bloemer, and C. M. Bowden, “Enhancement of χ^{(2)} cascading processes in one-dimensional photonic bandgap structures,” Opt. Lett. 24, 1663–1665 (1999).
- P. Yeh, A. Yariv, and C. S. Hong, “Electromagnetic propagation in stratified media,” J. Opt. Soc. Am. 67, 423–448 (1977).
- A. Yariv, Optical Electronics in Modern Communications (Oxford U., New York, 1997), Chap. 8, pp. 273–325.
- Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), Chaps. 8 and 9, pp. 109–140.
- An initial choice that does not satisfy Eqs. (3) physically represents a backreflected wave that is sustained by a field that, at the medium’s output, constitutes the superposition of two counterpropagating waves with suitable complex amplitudes. This is a physically meaningful and acceptable solution, but it is not the solution of the problem that we are dealing with.
- W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN 77 (Cambridge U. Press, Cambridge, 1999), Chap. 9, pp. 340–386.
- A. Taflove, Computational Electrodynamics. The Finite Difference Time Domain Method (Artech House, Norwood, Mass., 1995).
- J. P. Dowling and C. M. Bowden, “Atomic emission rates in inhomogeneous media with application to photonic band structures,” Phys. Rev. A 46, 612–622 (1992).
- J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytical expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996).
- J. P. Dowling, “Dipole emission in finite photonic bandgap structures: an exactly solvable one-dimensional model,” J. Lightwave Technol. 17, 2142–2151 (1999).
- M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, 1999), Chap. 1; see also Ref. 19.
- P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), Chap. 5.
- J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995), Chap. 4.
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.